The Formation of Molecular Clouds in our Galaxy

Michael Burton University of New South Wales

John Storey, Nick Tothill (UNSW)

David Hollenbach, Craig Kulesa, Chris Walker, Chris Martin (USA)

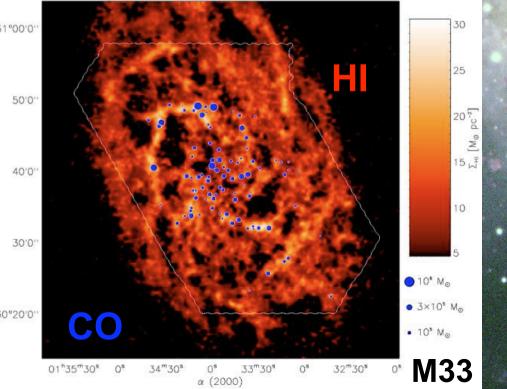
Jüergen Stutzki, Robert Simon (Germany) + many more....

STO, Antarctica 0.8m Terahertz

NANTEN2, Chile 4m Sub-millimetre

Mopra, Australia 22m Millimetre

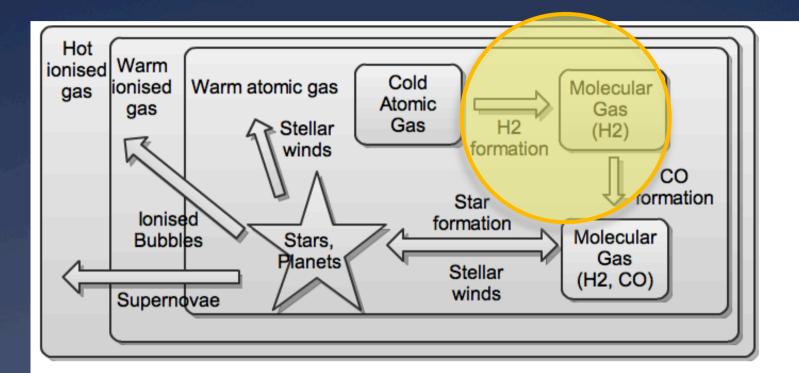
Outline


* The formation of molecular clouds?

* "Dark" H₂
 * Spectral diagnostics of the molecular medium

* Three Telescopes

- * Stratospheric Telescope Observatory (STO) Antarctica (THz)
- * NANTEN2 Chile (sub-mm)
- * Mopra Australia (mm)
 - * Long-wavelength mm astronomy: ATCA + Mopra + Parkes

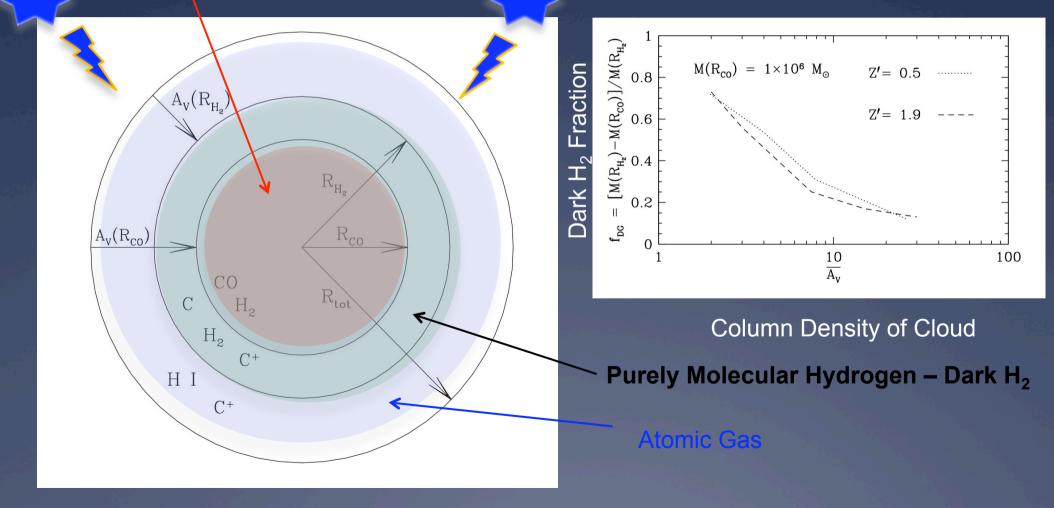

* Mapping the fourth quadrant of the Galaxy * "Fast-mapping"

Engargiola et al, 2003, ApJS, 149, 343 Molecular Clouds enveloped in Atomic Clouds *Form from the atomic substrate Gathered from gas over ~1kpc of space*

Nick Tothill

The Star-Gas Cycle

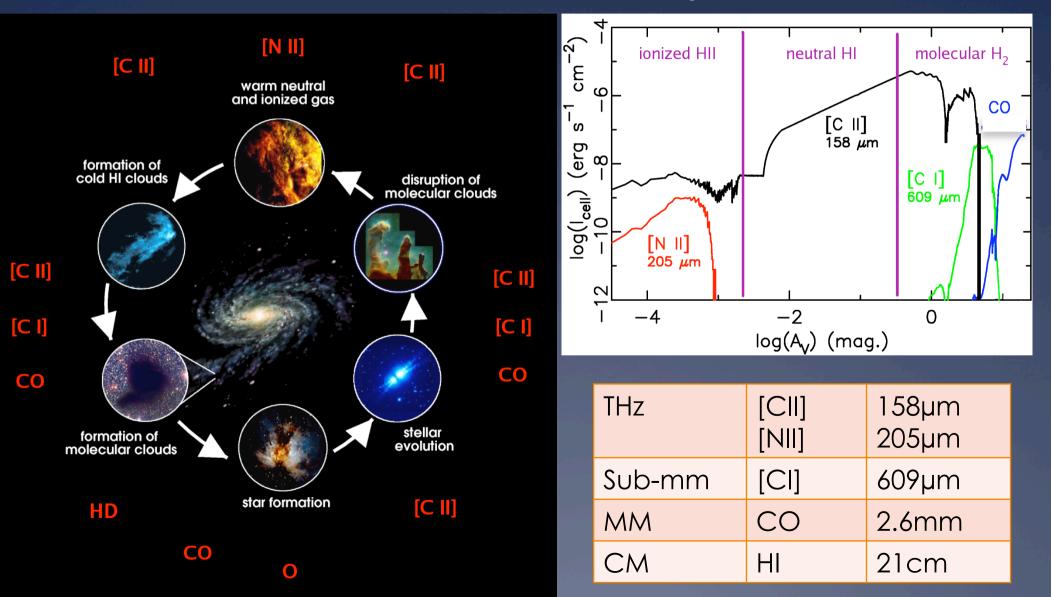
Stars form once molecular clouds form. The formation of molecular clouds is its rate-determining step.

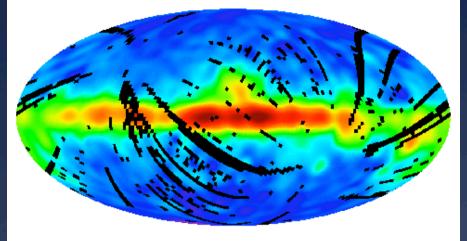

Gathering Atomic Gas in Molecular Clouds?

- Self-gravitational collapse of ensemble of small atomic clouds
 * <u>Clouds long-lived & stable</u>. Gravity vs. turbulence & mag fields.
 * Spherical cluster small clouds; velocity field showing collapse.
- Random collisional agglomeration of small clouds
 Irregular-shaped cluster of clouds with random velocities.
- Accumulation of material within high-pressure environments (e.g. winds from massive stars, SNRs)
 * Shells centred on previous regions of star formation.
 - Compression & coalescence of gas in converging flows in a turbulent medium
 - * <u>Clouds are transient</u>; gravity plays little role.
 - * Large diffuse features; evidence for compression where flows shock

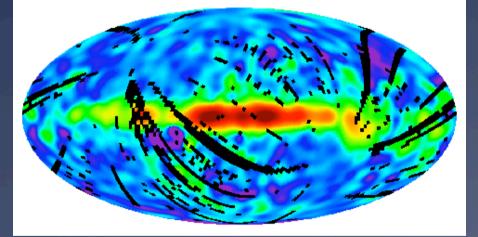
"Dark" H₂

'Normal' Molecular Gas


Perhaps one-third of the molecular gas is "dark"?!

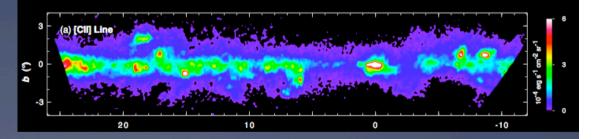

"The dark molecular gas", Wolfire, Hollenbach & McKee, 2010, Astrophysical Journal, 716, 1191

Emission Signatures H₂ cannot be seen directly


Cut through surface of a molecular cloud

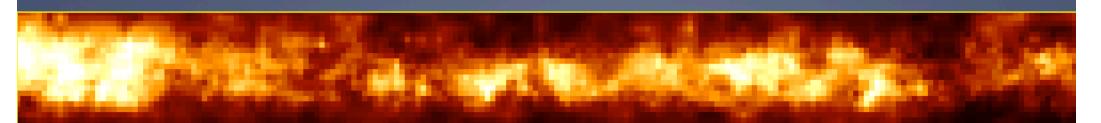
COBE FIRAS 158 μm C⁺ Line Intensity

COBE FIRAS 205 $\mu \mathrm{m}~\mathrm{N}^{+}$ Line Intensity

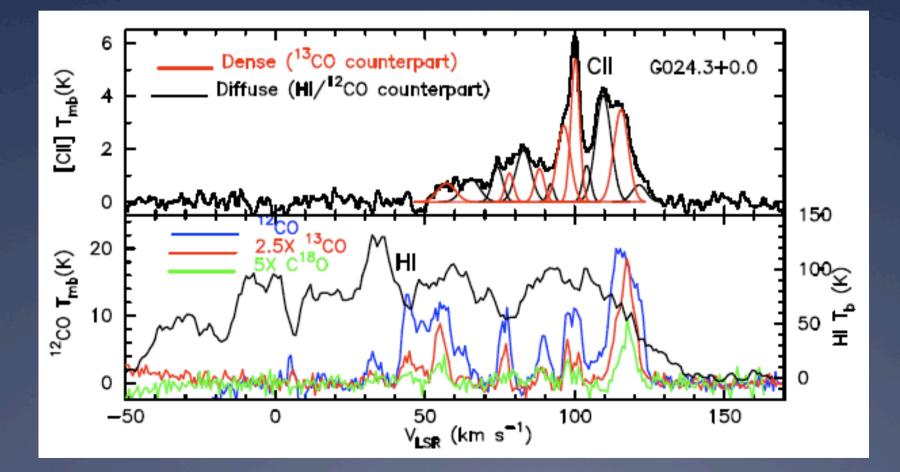


Only low resolution maps exist

Only Galactic Plane survey in [CII] and [NII] by FIRAS on COBE. 7° degree + R=100.


Balloon-borne BICE experiment measured [C II] over 200° with 15' resolution and R=1500.

In CO 1-0, the Colombia/CfA survey mapped the Galactic Plane at 8' resolution.


BICE [C II] balloon map

Columbia/CfA CO J=1-0

Herschel/HIFI GOT C+

Pencil beams through the Galactic plane

Velusamy et al (2010) A&A, 521, L18

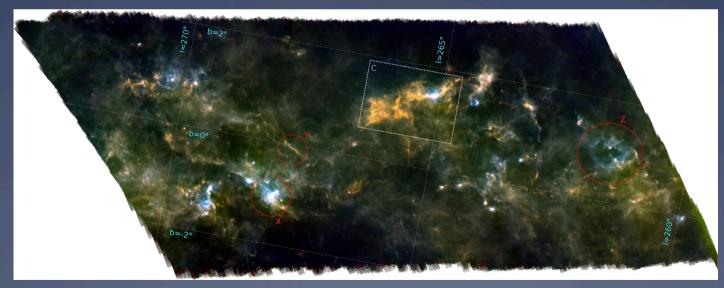
Diagnostic Species

Table 1: Diagnostic Species and their Spectral Lines to be Observed									
Species &	Frequency	Telescope	Spatial &	Diagnostic Value					
Spectral	(GHz)		Spectral						
Transition			Resolution						
CO J=1-0	115.3	Mopra	30'' & 0.1 km/s	Principal tracer of molecular clouds.					
¹³ CO J=1-0	110.2	(mm-band)		Isotopologues provide optical depths (hence					
$C^{18}O$ J=1-0	109.8			column densities), line centres and line widths					
				for saturated CO lines.					
$[C^+]$	1901	STO	60'' & 0.2 km/s	Major coolant of the dense ISM. Can arise in					
$^{2}P_{1/2}^{-2}P_{3/2}^{-2}$		(THz band)		molecular, atomic and ionized gas.					
$[N^+]^{3}P_1 - {}^{3}P_0$	1461		90'' & 0.2 km/s	Major coolant from warm ionized medium.					
$\begin{bmatrix} C \\ {}^{3}P_{1} - {}^{3}P_{0} \\ C \end{bmatrix} {}^{3}P_{2} - {}^{3}P_{1}$	492.2	Nanten2	40'' & 0.3 km/s	Surfaces of molecular clouds. Temperature					
$[C] {}^{3}P_{2} - {}^{3}P_{1}$	809.3	(sub-mm	25'' & 0.2 km/s	and density probe.					
CO 4-3	461.0	band)	45'' & 0.3 km/s	Warm molecular gas. With Mopra J=1-0 lines					
CO 7-6	806.7		25'' & 0.2 km/s	provides temperature.					
H 21cm	1.420	Parkes	120'' & 0.8 km/s	Atomic gas clouds. Available from the					
		/ATCA		Southern Galactic Plane Survey.					
		(cm-band)							

STO Stratospheric Terahertz Observatory

- 80 cm telescope & gondola from Flare Genesis
 Experiment (solar)
- 2x4-pixel multibeam receiver
- 1.45 THz (NII) + 1.9 THz (CII)
- 0.2 km/s,1–1.5' resolution

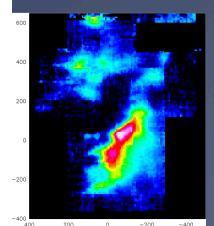
- Landing Jan 27, 2000
- anti-
- Launched from McMurdo LDBF
- Long duration balloons
- 35 km altitude, 4 week mission
- Scheduled to fly Dec 2011
- 1 day US test flight in Sep 2009
- Can be refurbished new receivers & flown again
- Four missions planned.

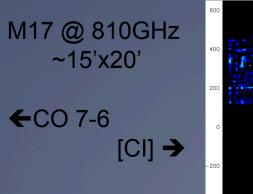

University of Arizona: Chris Walker & Craig Kulesa

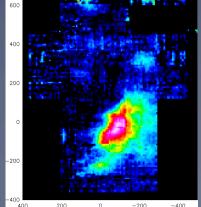
BLAST shows it can be done!

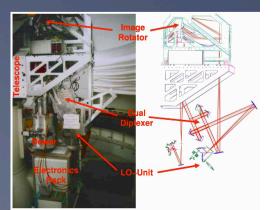
Balloon Large Aperture Sub-millimetre Telescope 2m Telescope, 11 day flight

10°x5° Vela Molecular Ridge 250µm, 350µm, 500µm


Netterfield CB *et al.* (27 *authors*) (2009) *BLAST: the mass function, lifetimes and properties of intermediate mass cores from a 50 square degree sub-millimetre galactic plane survey in Vela at I*~265°. ApJ 707, 1824

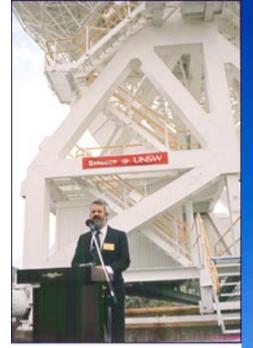



NANTEN2


* 4m sub-mm Telescope
* Pampa la Bola (4,800m; ALMA site)
* 115/230/345 (Nagoya) + 460/810 (SMART) GHz receivers
* University of Nagoya (Japan) + Cologne (Germany)
* + Universities from Chile, Korea, Switzerland, Australia
* UNSW, Sydney, Macquarie + Adelaide, JCU, Swinburne

SMART 2x8 channel multibeam 460 + 810 GHz

Millimetre Astronomy in Australia


CSIRO Australia Telescope

Australia Telescope Compact Array

* Millimetre-capable * 3 mm (85-105 GHz) * 5 x 22m antennas * 7mm (30-50 GHz) * 6 x 22m antennas * 12 mm (18-26 GHz) * 6 x 22m antennas *4 GHz bandwidth * The CABB..... * Water Vapour Radiometers * 22 GHz under development

SEEKING THE BIRTHPLACE OF THE STARS

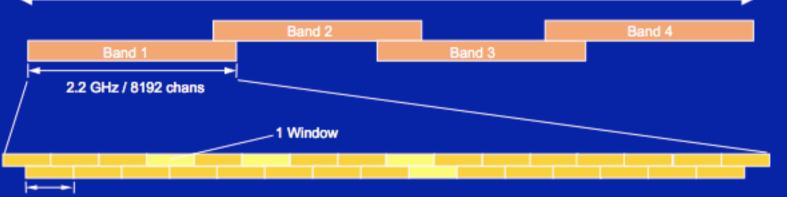
MMICs using HEMT devices

Mopra Radio Telescope

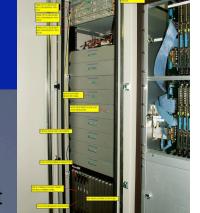
OTF Mapping with 22m dish

Mopra Telescope MM Capabilities

* 22-m Telescope for long-wave mm astronomy * 3mm + 7mm + 12mm * 77–116 GHz MMIC receiver (2.5-4 mm) **★** T_{sys} ~ 150K (@85GHz) – 300K (@115GHz) * 35" beam * η_{mb} (86 GHz) = 0.49, η_{mb} (115 GHz) = 0.42 * η_{xb} (86 GHz) = 0.65, η_{xb} (115 GHz) = 0.55 * 30-50 GHz receiver (5-10mm) * T_{svs} ~ 65K, 75" beam * 16-25 GHz receiver (12-18mm) * $T_{svs} \sim 45$ K, $\eta_{mb} \sim 0.7$, 150'' beam * Bandwidth 8 GHz: UNSW-MOPS correlator * Broad Band 32,000 channels, 0.8 km/s resn. * 16 Zooms modes over 137 MHz 4 per band, 4096 channels/zoom, 0.1 km/s * 2 Polarizations (i.e. 64,000 channels) * "On-the-Fly" (OTF) Mapping



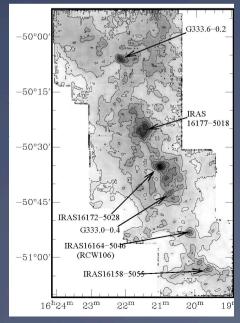
Mopra Spectrometer: UNSW-MOPS


Wideband Mode: Simultaneous coverage of 8.3 GHz, σ = 0.25 MHz

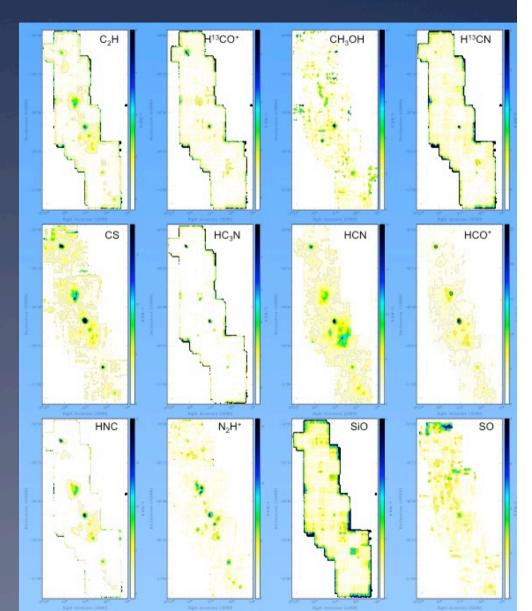
138 MHz / 4096 chans

Zoom Mode: Up to 16 windows (4 in each Band), σ = 0.03 MHz

Example: Broadband velocity resolution 0.84 km/s at 90 GHz, 8192 channels Zoom Mode velocity resolution 0.11 km/s at 90 GHz, 4096 channels

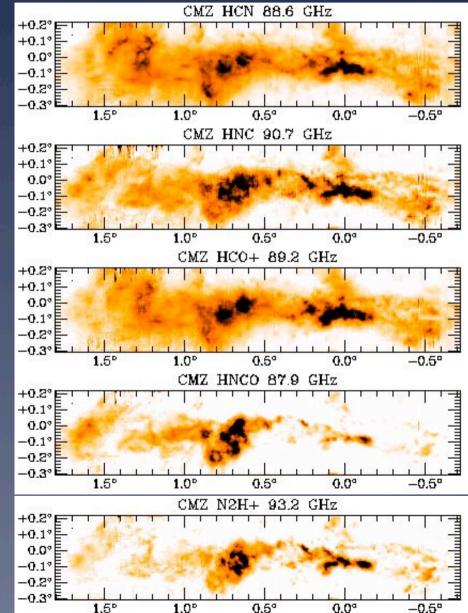


Built by CSIRO for UNSW, U. Sydney and Monash U. with ARC support


Bains et al, MNRAS 2006; Wong et al MNRAS 2008; Lo et al, MNRAS 2009.

Maria Cunningham, Indra Bains, Tony Wong, Nadia Lo

- * 1[°] multi-molecular line mapping at 3mm
- * 35" + 0.1 km/s * Zoom-mode
- * GMC-complex

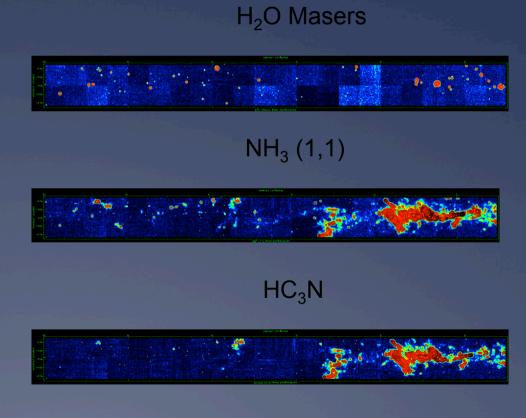


Mapping Projects II: The CMZ

Michael Burton, Paul Jones

- * 18 lines over 8 GHz band
 * 85-93 GHz
- * 35" resn + 1 km/s
 * Broad-band
- * Inner 3° of the Galaxy
 * 3 seasons (@3 wks/yr)

collab.phys.unsw.edu.au/CMZ/


Jones et al, 2008 & 2010

Molecular Lines Mapped in the CMZ									
3mm Band (30'' +	1km/s)	7mm Band (60'' + 2km/s)		12mm Band (150'' + 0.5 km/s)					
C_3H_2	85.34	NH ₂ CHO	42.39	H ₂ O Maser	22.24				
CH3CCH	85.46	HC ₅ N 16-15	42.60	NH ₃ (1,1)	23.69				
HOCO+ 4-3	85.53	HCS ⁺	42.67	NH ₃ (2,2)	23.72				
SO	86.09	HOCO+ 2-1	42.77	NH ₃ (3,3)	23.87				
SiO 2-1	86.85	²⁹ SiO 1-0	42.88	CH ₃ OH	24.9				
H ¹³ CN	86.34	SiO 1-0	43.42	NH ₃ (6,6)	25.06				
H ¹³ CO ⁺	86.76	HNCO 2-1	43.96	HC ₅ N 10-9	26.63				
HN ¹³ C	87.09	CH ₃ OH–I	44.07	HC ₃ N 3-2	27.29				
ССН	87.3	H ¹³ CCCN	44.08	NH ₃ (9,9)	27.48				
HNCO 4-3	87.93	HC ₅ N 17-16	45.26						
HCN	88.63	HC ¹³ CCN	45.30						
HCO⁺	89.18	HCC ¹³ CN	45.30						
HNC	90.66	CCS	45.38						
HC ₃ N 10-9	90.98	HC ₃ N 5-4	45.49						
CH ₃ CN	91.99	¹³ CS	46.25						
¹³ CS 2-1	92.49	HC ₅ N 18-17	47.93						
N₂H⁺	93.17	¹³ CS	48.21						
		CH ₃ OH	48.37						
		OCS	48.65						
		CS 1-0	48.99						

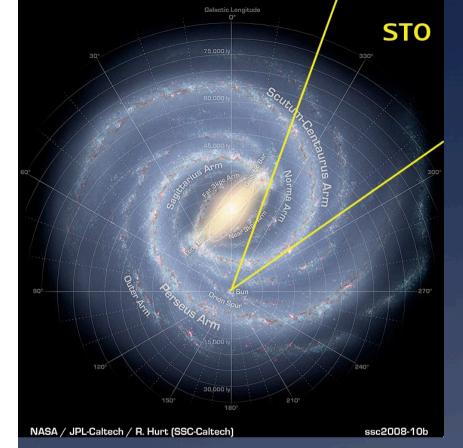
Mapping Projects III: HOPS Andrew Walsh

Walsh et al, 2008, MNRAS

* ~12 lines at 12 mm * Zoom mode * 2.5' beam, 0.5 km/s $*100^{\circ}x1^{\circ}$ * 3 seasons (@ 6 wks/yr) * Summer observing! * Galactic Plane

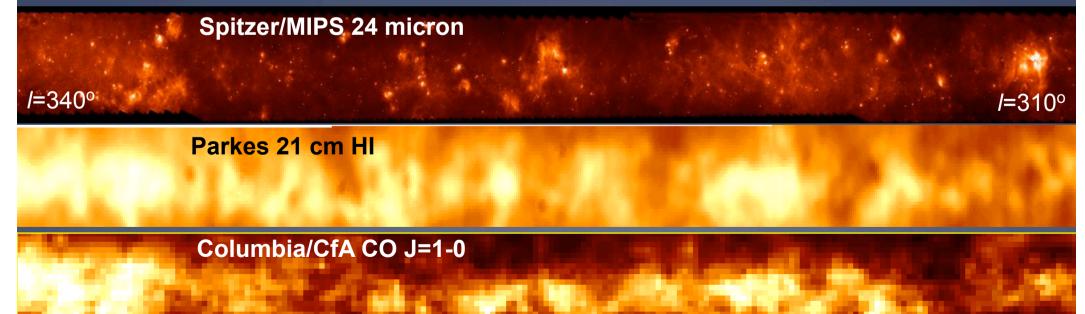
10° x 1°

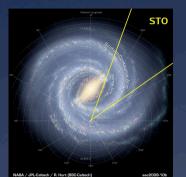
Parkes 64m Telescope

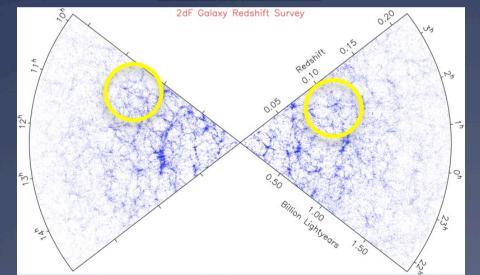


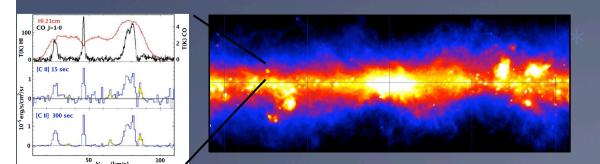
 12mm receiver
 55m effective aperture at 22 GHz

Band 0 NH₃ at 1 arcmin resolution?!

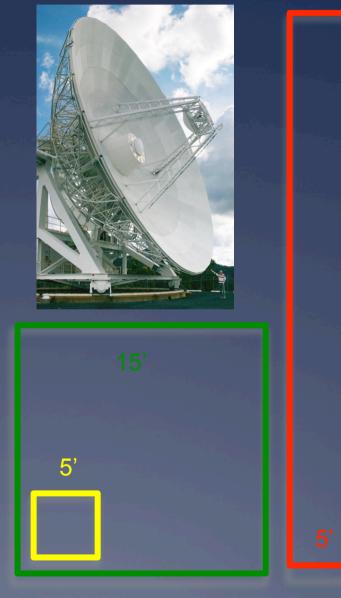

Imaga MASA Imaga © 2007 TarreMatrics




The STO Survey Stratospheric Terahertz Observatory


STO will perform a midplane Galactic survey from *I*=-20° to *I*=-55°, and |b|<1°spanning the Molecular Ring through the Scutum-Centaurus spiral arm and two inter-arm regions.

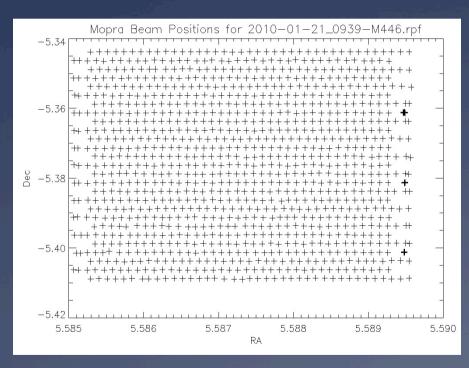
Identifying Forming Molecular Clouds from the Atomic Substrate

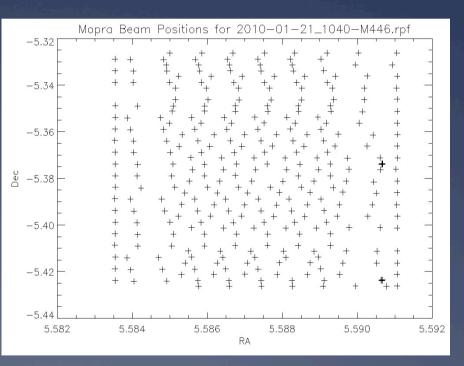

- Identify molecular, dark, atomic clouds from [CII], [CI], CO, [NII], HI emission
 - * GMC initially spread over ~1 kpc
 - Cover arm + inter-arm region
 - Velocity structures akin to "fingersof-God" in Galaxy redshift surveys, but on km/s scales.
 - Galactic rotation curve for distance + "peculiar" velocities around a cloud complex

Infall or Disruption?

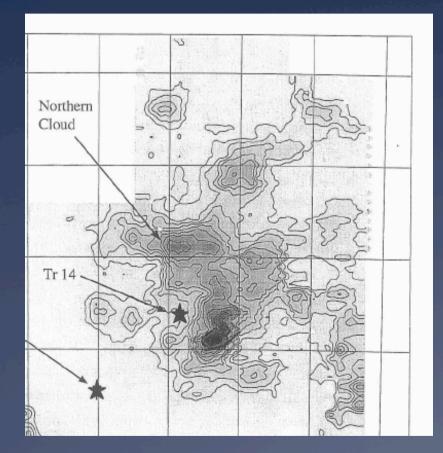
- Look for past tracers of SF; e.g. clusters, SN: disruption
- * If none: molecular cloud forming

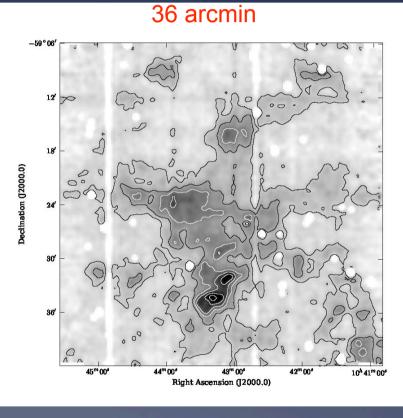
Fast Mapping with Mopra

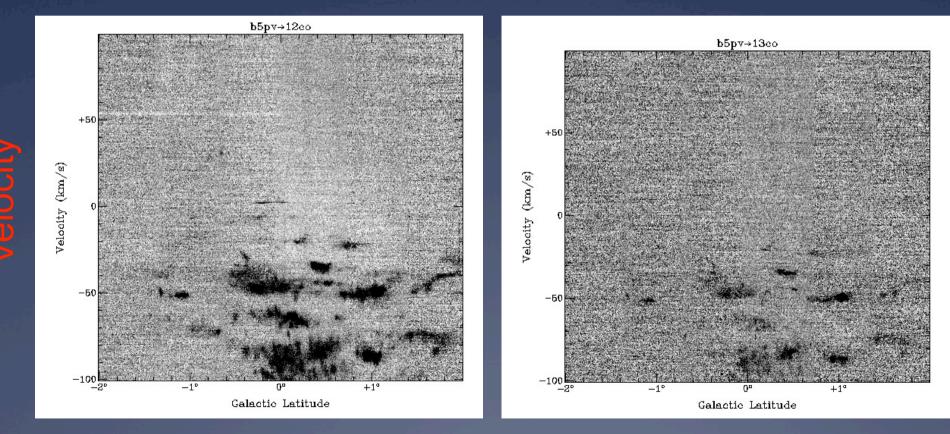

- Binning mode in 2s cycles* 8 x 256ms samples
- i.e. 8 x faster for 1/3rd the sensitivity
 * Only suitable for CO lines
- Scan at 36"/s with 12" row spacing
 c.f. 3"/s with 9" spacing
- * 36 hours/sq deg c.f. 350 hours
- 4 zoom modes, not 16
 * ¹²CO, ¹³CO, C¹⁸O, C¹⁷O

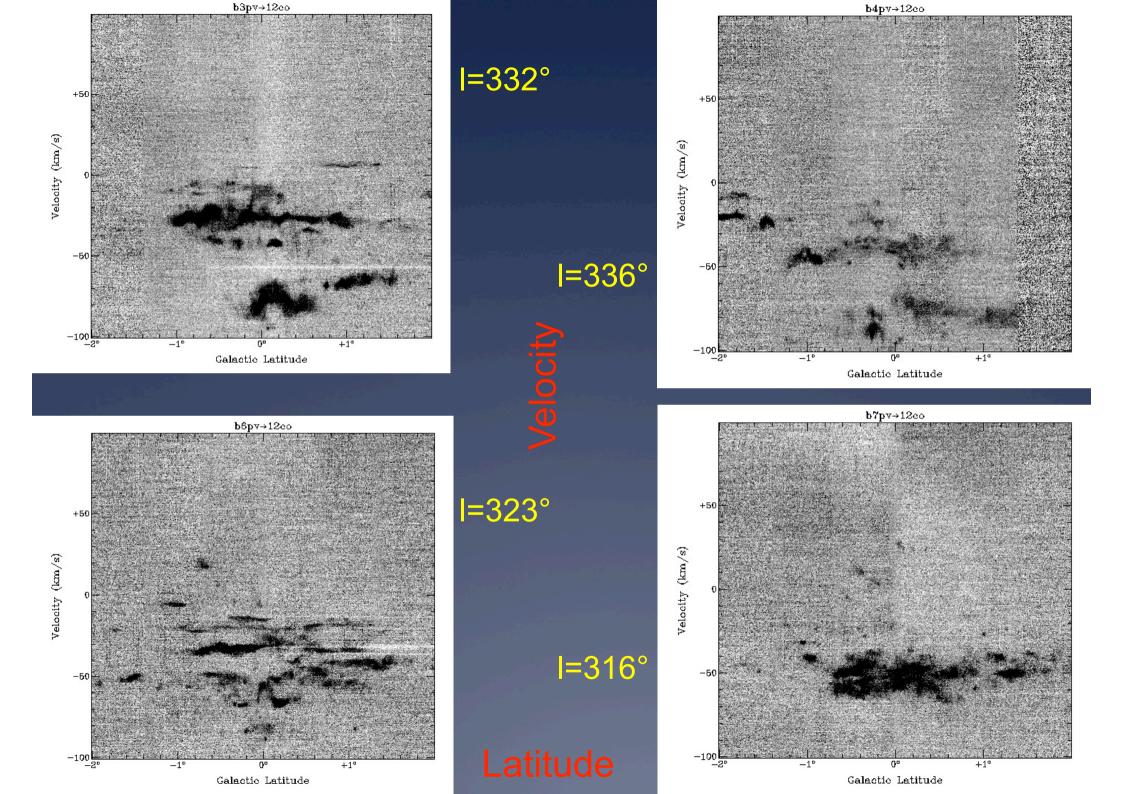


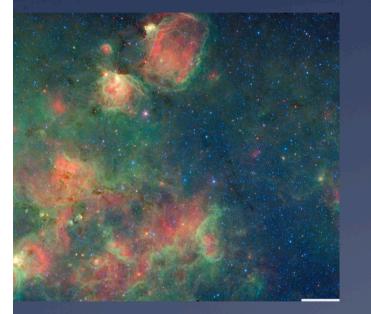
66' for 60 uniform coverage

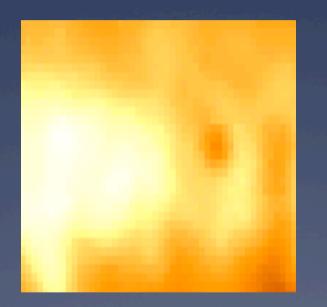

Thanks to Nick Tothill, Warwick Wilson, Dick Ferris, Balt Indermuehle, James Urquhart!

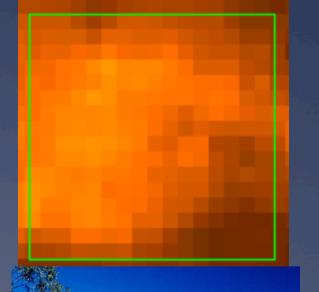

Beware uneven beam coverage with Fast OTF Standard OTF Fast OTF


Two Views of Carina in CO with Mopra Point-by-Point Fast-OTF




1996-7: Several months, at site. 45" beam, 1line, 1 poln, 64 MHz, 0.2 km/s *Clear skies!* Kate Brooks, PhD Thesis 2010: 6 hours, in-between teaching from my office 30" beam, 4 lines, 2 poln, 137 MHz, 0.1 km/s *Extensive cloud!*


Fast Mapping Strip Scans $I=330^{\circ} \times 6', b=-2^{\circ} - +2^{\circ}, \Delta V=+250 \text{ km/s}$ $^{12}CO (115.3 \text{ GHz})$ $^{13}CO (110.2 \text{ GHz})$



The First Segment for Mopra Edge of spiral arm to inter-arm region $l=325.25^{\circ}-327.25^{\circ}, b=+/-1^{\circ}$ $2 \times 2^{\circ}$

Parkes 21cm HI

Spitzer / MIPSGAL 3.6µm+8µm+24µm