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The field-orientation dependence of the 1D enhancement in Zeeman spin-splitting in
InGaAs quantum point contacts

T. P. Martin,1 A. Szorkovszky,1 A. P. Micolich,1 A. R. Hamilton,1, ∗

C. A. Marlow,2 R. P. Taylor,2 H. Linke,2, 3 and H.Q. Xu3

1School of Physics, University of New South Wales, Sydney NSW 2052, Australia
2Department of Physics, University of Oregon, Eugene OR 97403, USA

3Division of Solid State Physics, Lund University, Box 118, S-221 00 Lund, Sweden
(Dated: October 2, 2009)

We study the Zeeman spin-splitting in a quantum point contact (QPC) etched into an InGaAs/InP
heterostructure for three orthogonal magnetic field orientations with respect to the QPC. For the
two in-plane orientations we observe an isotropic Zeeman spin-splitting, which becomes stronger as
the system is made more one-dimensional. The Lande g-factor is enhanced by up to a factor of two
compared to two-dimensional electron systems in InGaAs/InP. A much larger Zeeman splitting is
observed when the field is oriented perpendicular to the heterostructure, resulting in a g-factor of
15.7 in the one-dimensional limit.

PACS numbers: 73.21.Hb, 71.70.Ej, 85.75.-d

Quantum devices based on InGaAs/InP heterostruc-
tures hold considerable promise for spintronic applica-
tions due to their strong spin-orbit interaction and high
transport mobility.1 The strong spin-orbit interaction
arises due to the narrow-band gap of InGaAs, which
leads to a significantly higher Landé g-factor compared to
more conventional materials, such as GaAs, that are com-
monly used for realizing quantum devices.2–6 Addition-
ally, it has recently been shown in both experimental7–12
and theoretical13–16 studies that further enhancement in
the g-factor can be achieved by confining the carriers
to a one-dimensional system such as a quantum wire or
quantum point contact (QPC). This extra enhancement
is due to the dominance of the exchange energy over the
kinetic energy in low dimensions and at low electron den-
sities.13–15

The 1D g-factor is not necessarily isotropic, depend-
ing both on the orientation of the field with respect to
the 1D system, and in some cases, the orientation with
respect to crystallographic axes. Despite some studies of
the anisotropy of the Zeeman splitting in 1D hole sys-
tems in GaAs,10,16,17, the directional dependence of the
Zeeman splitting in 1D electron systems in InGaAs has
not been fully explored. In this paper, we study the Zee-
man splitting in an InGaAs/InP QPC device for three or-
thogonal orientations of the magnetic field with respect
to the transport direction in the QPC. We find strong
exchange enhancement for in-plane magnetic fields, and
even stronger enhancement for perpendicular magnetic
fields, with a peak g-factor of 15.7 achieved in this de-
vice.

The material used for this experiment was an
In0.75Ga0.25As/InP heterostructure modulation doped
with Si.18,19 A 120 nm wide and 160 nm long QPC was
defined with electron-beam lithography and shallow wet
etching. The etch trenches are then back-filled with pho-
toresist, and a Ti/Au top-gate is deposited to cover the
entire structure. The 2D electron density and mobil-
ity, measured adjacent to the QPC on the same chip,

are 6.6 × 1011 cm−2 and 200,000 cm2/Vs at T = 1.3 K
and zero gate bias.19 Measurements were performed at a
temperature of 1.3 K in three separate cool-downs with
different magnetic field orientations: parallel to the het-
erostructure growth direction (Bz); in-plane and parallel
to the QPC transport direction (Bx); and in-plane and
perpendicular to the QPC transport direction (By). The
QPC conductance G was measured in a four-probe con-
figuration using lock-in amplification at 17 Hz with an
a.c. excitation of 100 µV.

Figure 1(b) shows the classic staircase of quantized
conductance plateaus as a function of the applied top
gate bias Vg.20 The evolution of the conductance and
transconductance are shown for in-plane orientations Bx

and By in the left (a-c) and right (d-f) panels of Fig. 1 re-
spectively. To highlight the behavior of the 1D subbands
we focus on the transconductance dg/dVg, where g =
dI/dV is the differential conductance . High transcon-
ductance (light regions in the colormaps) correspond to
the risers between the plateaus in the conductance g,
where the Fermi energy EF crosses the various 1D sub-
band energies En.7 In panels (a) and (d) the peaks in
the transconductance (bright regions) split by a voltage
δVg as the magnetic field lifts the spin degeneracy of the
1D subbands. Similar splittings are observed in panels
(c) and (f) when a d.c. source-drain bias Vsd is applied
across the QPC at B = 0. For Vsd 6= 0 the chemical
potentials in the source and drain reservoirs no longer
coincide in energy, and the transconductance peaks sep-
arate by a gate voltage proportional to the bias energy
eVsd.7

We use a standard procedure that compares the split-
tings in B with those in Vsd to obtain the Zeeman energy
splitting:7,21,22

∆EZ = e
dVsd

dVg
δVg(B) = |g∗n|µBB (1)

where |g∗n| is the effective g-factor of the nth subband,
δVg(B) is the splitting in gate voltage as a function
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FIG. 1: (Color online) Zeeman spin-splitting induced by
in-plane magnetic fields applied (left, Bx) perpendicular
and (right, By) parallel to the QPC confinement. (a),(d):
Transconductance dg/dVg plotted versus gate voltage Vg and
B, showing the evolution of each spin-degenerate transition
into two spin-split transitions (light regions mark risers, i.e.
the 1D subband transitions). (b),(e): Conductance g plotted
versus Vg at B = 0 (blue) and 10 T (red). (c),(f): Transcon-
ductance dg/dVg plotted versus Vg and d.c. source-drain bias
Vsd at B = 0. The device was thermally cycled to 300 K be-
tween the measurements presented in panels (a–c) and those
in (d–f). T = 1.3 K

of B, and dVsd/dVg converts the splitting in gate volt-
age to an energy splitting. The Zeeman splittings for
By obtained from the data in Figs. 1(d) and (f) are
plotted in Fig. 2(a). The Zeeman splitting increases
linearly with By and we calculate a field-independent
g∗n = d(∆EZ)/dB for each subband from the slope of
the lines in Fig. 2(a). The finite intercept of the Zeeman
splitting at B = 0 for the n = 1 subband is associated
with the ‘0.7 anomaly’ that has been extensively studied
in GaAs systems.7,8 Similar data is obtained for Bx,11
with a linear Zeeman splitting again allowing a field in-
dependent g-factor to be extracted. Figure 2(b) shows
|g∗n| for both in-plane orientations as a function of the
subband index n. The g-factors for the two orientations
agree within error (within 10% for n = 3), suggesting
that the Zeeman splitting is isotropic for in-plane fields.

Measuring the Zeeman splitting when the magnetic
field is perpendicular to the quantum well is more com-
plex, since Bz couples to the orbital motion of the elec-
trons and adds a harmonic potential to the QPC confine-
ment.5,19,23–25 At high magnetic fields, B > 2~kF /eWqpc,
the cyclotron diameter fits within the electrostatic width
Wqpc of the QPC, and we enter the quantum Hall regime
where the 1D subbands have evolved into 2D Landau lev-
els.25 To ensure that we are measuring the 1D g-factor,
rather than simply measuring the 2D Landau level spac-
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FIG. 2: (a) Zeeman splitting ∆EZ plotted vs magnetic field
By for the lowest three subbands. Solid lines show linear fits
to the data. (b) Effective Landé g-factors |g∗| measured in
the QPC for the three magnetic field orientations Bx, By, and
Bz. Dashed lines are guides to the eye. The upper and lower
arrows on the right hand side indicate the bare 2D g-factors
from Ref. 4 for B perpendicular and parallel to the quantum
well respectively.

ing, we restrict the measurement to fields Bz . 5 T where
the electrostatic confinement dominates.

Fig. 3(a) shows the evolution of the 1D subbands in a
perpendicular magnetic field, with dg/dVg plotted as a
function of Vg and Bz. The subband evolution shows a
pronounced curvature due to the coupling of Bz to the
orbital motion, in contrast to in-plane fields where the
subbands split linearly (Figs. 1(a,d)). To ensure that our
analysis is valid in this more complex regime we measure
the Zeeman splitting using two independent techniques.

The first approach is to use the same method as for in-
plane fields, measuring the Zeeman splitting ∆EZ from
the splittings of the transconductance peaks δVg as a
function of Bz. The δVg are then converted to an energy
by performing source-drain biasing. However, because
Bz alters the confining potential in the QPC, it causes
a curvature of the peak splittings and moves each peak
to lower gate bias with increasing Bz. To account for
this we performed source-drain biasing measurements at
several different magnetic fields. An example is shown
in Fig. 3(c) for Bz = 4 T. The conversion between gate
voltage splitting and energy dVsd/dVg is plotted as a func-
tion of Vg for several different 1D subbands and magnetic
fields in Fig. 3(c). Somewhat unexpectedly we find all the
data fall onto a single trend-line independent of the mag-
netic field, which shows that the magnetic field does not
affect the ‘lever-arm’ between the applied gate voltage
and the 1D subband energies. We use the trend-line in
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FIG. 3: (Color online) (a) Transconductance dg/dVg plotted
versus gate voltage Vg and magnetic field Bz applied perpen-
dicular to the quantum well. Bright regions show the evo-
lution of the subband edges with Bz. The labels 1 ↑ etc.
indicate the subband index and the spin state of the various
subbands. (b) Transconductance dg/dVg plotted versus gate
voltage Vg and source-drain bias Vsd, measured at Bz = 4 T.
(c) Energy dependence dVsd/dVg plotted vs Vg, extracted at
different fields Bz. The dashed line is a linear interpolation
between values.

Fig. 3(c) to convert the gate voltage splitting δVg at any
Bz into a Zeeman splitting ∆EZ according to Eqn 1.

The Zeeman energy obtained from the above measure-
ments is plotted as a function of Bz for the three lowest
subbands in Fig. 4. Reassuringly ∆EZ grows linearly
with Bz. We can also rule out the possibility that we
are simply measuring the Landau level separation in the
quantum Hall regime: This would give an apparent spin-
splitting of ~ωc/2 independent of subband index, which
is much larger than the slope of the lines we obtain.

The above extraction of the Zeeman splitting using us-
ing Eqn 1 explicitly assumes that the electrostatic poten-
tial in the wire is not affected by the magnetic field, which
is not the case for Bz. Therefore we have measured the
Zeeman splitting for n = 3 using a second, completely
separate technique, based upon magnetic depopulation
of hybrid magneto-electric subbands. Magnetic depopu-
lation has previously been used to determine the eigen-
ergies of spin degenerate 1D subbands19,23,24, and the
large InGaAs g-factor allows us to extend this technique
to also measure the 1D Zeeman energy.

In the Landau gauge, the hybrid magneto-electric con-
finement in the QPC can be modeled as:

U±
hyb(y) = U0(y) +

1
2
m∗ω2

cy2 ± |g∗n|µBBz

2
(2)

where ωc = eBz/m∗ is the cyclotron frequency, m∗ =
0.038me, and ± denotes up and down spins. The electro-
static confinement U0(y) is modeled as a flat-bottomed
parabola of width t and curvature ~ω0.19,24, and gn is the
g-factor of the nth 1D subband. For a given Fermi en-
ergy (determined by Vg) the magnetic field at which the
1D subbands depopulate can be calculated from Eqn 2.
This can then be compared with the measured magnetic
fields at which the 1D subbands depopulate for a fixed
Vg, indicated by the bright lines in Fig. 3(a), to extract
U0, t, ~ω0 and gn.19,24 It is only possible to obtain a well
constrained set of fitting parameters if at least 3 of the
1D subbands depopulate at the same Vg, so it was only
possible to extract the g-factor of the n = 3 subband
with this technique. One complication of this technique
is that it assumes that the field is low enough that the
Fermi energy in the 2D reservoirs is approximately con-
stant. However in the experiments the filling factor in
the 2D reservoirs changes from ν = 10 to ν = 4 between
Bz = 3 and 5 T, which can produce an oscillation of the
Fermi level that is not accounted for in the depopulation
method.

The Zeeman splittings extracted for n = 3 from the
source-drain biasing and magnetic depopulation methods
are plotted in Fig. 4 as solid and open triangles respec-
tively. The data show a linear growth of Ez and good
agreement between the two methods. This suggests that
reliable g-factors can be extracted even in a perpendicu-
lar magnetic field, and these are plotted in Fig. 2(b). The
g-factors for the Bz orientation are significantly larger
than for in-plane fields, with a value of |g∗1 | = 15.7 for
the 1st subband.

It is instructive to compare the 1D g-factors measured
here with previous measurements in 2D GaxIn1−xAs
quantum wells. Kowalski et al. used optically detected
magnetic resonance (ODMR) to probe the bare electron
g-factor g as a function of gallium fraction x and field
orientation.4 Note that the ODMR measurements of the
bare electron g-factor are very different to the g∗ that we
measure in our experiments, since ODMR is not affected
by the exchange and correlation effects that enhance g∗

in the quantum Hall regime. In Ref 4 it was found that
the bare g-factor was maximum with the magnetic field
oriented perpendicular to the quantum well, whereas a
lower and isotropic g-factor was obtained for in-plane
fields. The heterostructures used by Kowalski et al. were
grown under similar conditions and contained quantum
wells of similar width to ours, so we extrapolate their data
to gallium fraction x = 0.25 (c.f. Fig. 2 of Ref. 4) to ob-
tain 2D g-factors |g| ≈ 3.1 for in-plane and |g| ≈ 5.2 for
perpendicular fields. We indicate these bare 2D g-factors
with the arrows on the right hand side of Fig. 2(b). For
in-plane fields and large 1D subband index, the g∗ we
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FIG. 4: Zeeman splitting ∆EZ plotted vs magnetic field Bz

applied perpendicular to the quantum well. For the n = 3
subband, solid triangles are obtained from the source-drain
biasing method, and open triangles are obtained from the
magnetic depopulation method. Solid lines show linear fits to
the data.

measure tend towards the bare 2D limit. For lower 1D
subband index the 1D confinement becomes stronger, ex-
change effects become more pronounced, and |g∗| rises,
reaching a maximum of approximately double the 2D re-
sult (|g∗1 | = 6.2 for By). The magnitude of the relative
enhancement for n = 1 and the isotropy with respect
to Bx and By match previous measurements in n-type
GaAs QPCs.7,8 In contrast, for perpendicular fields, our
measured g∗ are significantly larger than the ODMR bare
g measurements, and do not approach the bare g-factor
at large subband index, since ODMR is not sensistive to
the strong oscillatory exchange enhancement that occurs
in a perpendicular magnetic field.13

In summary, we have demonstrated a significant en-
hancement of the Zeeman spin-splitting in an InGaAs

QPC for three orthogonal magnetic field directions. The
largest value of |g∗1 | = 15.7 occurs in perpendicular fields
for the lowest 1D subband. In agreement with theoret-
ical predictions based on the exchange interaction,13–15
all three field orientations show the largest enhancement
for the n = 1 subband. Although the larger enhance-
ment observed in perpendicular fields indicates that the
additional orbital confinement strengthens the exchange
enhancement, the magnitude of the enhancement is still
much less than that predicted for infinite wires.14,15 Mod-
els of infinite 1D wires for both in-plane14 and perpen-
dicular15 orientations indicate that spin-polarization in
the wires causes an exchange-enhanced Zeeman splitting.
The 1D models also show an increase in enhancement as
the subband occupation is reduced and the confinement
strengthens.14,15 This is in agreement with the results
in Fig. 2(b) and previous experimental observations.7–12
Wang and Berggren have pointed out that the assump-
tion of an infinite wire may not be realistic for a short
QPC coupled to 2D reservoirs, and that the 2D coupling
will reduce the measured values of g∗.14 For example, the
magnitude of the exchange-enhancement observed in ex-
periments is typically no more than a factor of two for
electrons,7,8,11 while the theory predicts an enhancement
of order 10 or more.14,15 More realistic calculations that
include the 2D reservoirs, and the effect of Bz on the
2D Fermi energy, such as those carried out recently for
B = 0,26 could help to clarify the role of exchange en-
hancement in ballistic QPCs.
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