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Spin–orbit coupling is a manifestation of special relativity. In the reference frame of a moving electron, electric fields transform
into magnetic fields, which interact with the electron spin and lift the degeneracy of spin-up and spin-down states. In solid-state
systems, the resulting spin–orbit fields are referred to as Dresselhaus and Rashba fields, depending on whether the electric fields
originate from bulk or structure inversion asymmetry, respectively. Yet, it remains a challenge to determine the absolute value of both
contributions in a single sample. Here, we show that both fields can be measured by optically monitoring the angular dependence
of the electrons’ spin precession on their direction of motion with respect to the crystal lattice. Furthermore, we demonstrate spin
resonance induced by the spin–orbit fields. We apply our method to GaAs/InGaAs quantum-well electrons, but it should be universally
useful to characterize spin–orbit interactions in semiconductors, and therefore could facilitate the design of spintronic devices.

Symmetry-breaking electric fields in semiconductors induce a spin
splitting, because electric fields appear to a moving electron as
magnetic fields, which interact with the electron spin and couple
it with the electron momentum, or wavevector, k. In zinc-blende-
type crystals, such as GaAs, the electric fields resulting from the
lack of an inversion centre lead to bulk inversion asymmetry (BIA)
and to the Dresselhaus term in the hamiltonian1. In the conduction
band, its coupling is linear or cubic in k with proportionality
constants β and γ , respectively. In heterostructures, further electric
fields are introduced owing to structure inversion asymmetry
(SIA), giving rise to the Rashba term2, which for conduction-
band electrons is linear in k with coupling constant α. Both
contributions have been extensively studied3, as a potential use of
electron spins in future devices (for example, a spin transistor4)
requires precise control of the spin’s environment and of the
Dresselhaus and Rashba fields5. Spin–orbit fields also contribute to
spin decoherence6.

In two-dimensional systems, such as quantum wells (QWs),
usually α � β and γ ≈ 0 (refs 7–10). Therefore, measurements of
the spin–orbit coupling initially focused on the Rashba term in
QWs and concentrated on the study of beatings in Shubnikov–
de Haas oscillations8,10–13, whose interpretation, however, is
debated14,15. More recent experiments include the investigation
of antilocalization in magnetotransport16 or the analysis of
photocurrents17. In the latter experiment, the ratio α/β could
be determined. A gate-induced transition from weak localization
to antilocalization allowed the discrimination between Rashba, as
well as linear and cubic Dresselhaus contributions to the spin–
orbit field18. Tuning of the Rashba coupling has been achieved by
introducing further electric fields from gates9,19 or by changing the
electron density20,21.

The influence of effective spin–orbit magnetic fields on optical
measurements in a heterostructure was already measured in 1990

(ref. 22), and the spin–orbit-induced precession of spin packets
was observed more than a decade later23,24. Remarkably, the in-
plane spin–orbit fields in a QW can lead to an out-of-plane spin
polarization25. In ref. 26, it was pointed out that although spin–
orbit and external magnetic fields can be added to describe spin
precession22, a more complicated concept has to be evoked when
accounting for the generation of an out-of-plane spin polarization.

Here, we show that both Rashba and Dresselhaus fields in
the conduction band can be determined by measuring the spin
precession of optically polarized electron spins as a function of the
direction of their drift momentum. We find good agreement with
the assumption that the spins precess about the sum of the effective
spin–orbit and an external magnetic field, B0. In the section below,
we derive an expression for the magnitude of this total magnetic
field, Btot, as a function of the angles θ and ϕ that B0 and the
electron drift momentum, h̄k, include with the crystal’s [110] axis.
These predictions provide a good description of the experimental
data, Btot(θ,ϕ), of three (001) GaAs/InGaAs QW samples, and
allow us to separately determine the Rashba and Dresselhaus
contributions to the spin–orbit field in the second section. In the
third section, we demonstrate spin resonance induced by oscillating
spin–orbit fields.

THEORETICAL EXPECTATIONS

Neglecting cubic terms, the Rashba and Dresselhaus spin–orbit
couplings in a QW are linear in k and can be described by an
effective magnetic field3,27,

BSIA =
α

gµB

(
ky

−kx

)
and BBIA =

β

gµB

(
ky

kx

)
, (1)

for a coordinate system with base vectors x̂ ‖ [110] and ŷ ‖ [110].
Here, g is the electron’s g-factor and µB is the Bohr magneton.
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Figure 1 Orientation of the magnetic and electric fields and measurement set-up. a,b, Rashba (a) and Dresselhaus (b) spin–orbit fields for different orientations of the
k-vector on a unit circle. c, Electric and magnetic fields involved in the experiment. d, Optical microscopy image of the sample and wiring of the gates. e, The electron
precession frequency, ω (t ), is determined at different phases of the oscillating wavevector, k (t ).

Both fields are in the plane of the QW, but whereas BSIA is always
perpendicular to k (Fig. 1a), BBIA has a different geometrical
dependence on k (Fig. 1b). A conduction-band electron
experiences the total magnetic field, Btot = B0 +BSIA +BBIA (Fig. 1c).
With a time-dependent k(t) = k0 sin (2πνt) · (cosϕ,sinϕ), we
obtain for the total magnetic-field square

B2
tot(t) = B2

0

×

(
1+

2k0 sin(2πνt)

gµBB0

([α+β]cosθsinϕ+[β−α]sinθcosϕ)

+

(
k0 sin(2πνt)

gµBB0

)2(
α2

+β2
−2αβcos2ϕ

))
. (2)

B2
tot(t) is expected to oscillate around B2

0 with frequencies
ν and 2ν. If cubic Dresselhaus terms were included in Btot,
further terms proportional to kn, n = 3,4,6 would appear in
equation (2) and induce oscillations at frequencies nν. Assuming
that |BSIA|, |BBIA| � B0, we expand the square root of equation (2)
up to second order in k0/B0, and obtain, using equation (1),

Btot(t) ≈ B0 +A(θ,ϕ)sin(2πνt)+B(θ,ϕ)sin2 (2πνt), (3)

with

A(θ,ϕ) = (BBIA +BSIA)cosθsinϕ+ (BBIA −BSIA)sinθcosϕ

and

B(θ,ϕ) = [(BBIA +BSIA)sinθsinϕ− (BBIA −BSIA)cosθcosϕ]
2/B0.

By measuring the oscillation amplitude of Btot(t) for varying
angles θ and ϕ, we can extract the Rashba and Dresselhaus
contributions to the spin–orbit magnetic field.

EXPERIMENTS

To induce an oscillating spin–orbit field, we impose an oscillating
drift momentum, h̄k(t), on the QW electrons by applying an in-
plane a.c. electric field, E(t) = E0 sin(2πνt), ν = 160 MHz, at an
angle, ϕ, with the x axis, see Fig. 1c. In the diffusive limit, electron
scattering occurs fast on the timescale 1/ν, and k(t) ∝ E(t) (see
the Methods section). We monitor the spin precession frequency,
ω(t) = gµBBtot(t)/h̄, of optically polarized electron spins at
different times, t , (see Fig. 1e) using time-resolved Faraday rotation
(TRFR, see the Methods section).

Figure 2b shows TRFR oscillations at different t . Owing to
the oscillating spin–orbit field, ω(t) and consequently Btot(t)
change periodically with t . Likewise, ω(t) changes with the angle
ϕ (Fig. 2c), as predicted by equation (3). The fit to this equation
with B0, A(θ,ϕ) and B(θ,ϕ) as fit parameters matches the data
points very well (Fig. 2d), with B0 = 0.958 T, in agreement with
Hall probe measurements of the external magnetic field. For most
ϕ, we find A � B. The quadratic term in k(t), B(θ,ϕ), which
contributes to oscillations with frequency 2ν, is visible in the
experiment only when rotating E to an angle ϕ at which the k-linear
term A(θ,ϕ) is weak, see Fig. 2e. Apart from the geometrical
dependence, the amplitude of B(θ,ϕ) is suppressed by a factor
(|BBIA| + |BSIA|)/B0 ≈ 0.03, that is, by more than one order of
magnitude compared with A(θ,ϕ). Higher-order contributions
were below the detection limit (roughly 1/4 of the second-order
effects), which indicates that in our samples, cubic Dresselhaus
terms are not relevant.

Given that second-order terms are already strongly suppressed,
we restrict our analysis to the linear term A(θ,ϕ). For θ = 0 and
90◦, A(θ,ϕ) is given by (BSIA + BBIA)sinϕ and (BBIA − BSIA)cosϕ,
respectively. This dependence is observed in the experiment, as
shown in Fig. 3a,b. The measured data points clearly follow sinϕ
for θ = 0 and cos ϕ for θ = 90◦ (solid lines). From the two
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Figure 2 TRFR signal measured at different times and electric-field angles at
θ = 45◦ . a, Faraday rotation, FR, versus pump–probe delay. b, TRFR scans at
different times, t ; the dashed line indicates t= 0. c, TRFR scans at different angles,
ϕ, at t= 0. d,e, Total magnetic field as a function of t for ϕ = 45◦ (d) and
ϕ = −56◦ (e). The solid line is a fit to equation (3).

measurements at θ = 0 and 90◦, we can extract the spin–orbit
magnetic fields BSIA and BBIA. Normalized to a gate modulation
amplitude of V0 = 2 V (≈13 dBm), corresponding to an electric
field of E0 ≈2,900 V m−1, we find BSIA =−4.2,−8.5 and −17.6 mT
and BBIA = 21.6, 21.1 and 15.7 mT for samples 1, 2 and 3,
respectively. Note that as t is known up to an offset t0, the sign
of A(θ,ϕ) is arbitrary, leading to an uncertainty in the absolute
sign of BSIA and BBIA (the relative sign is obtained). We choose
BBIA > 0. As a function of the magnitude of the applied electric
field E0, BSIA and BBIA increase linearly (see Fig. 3c), as expected
from the linear relation between k(t) and E(t) and equation (1).
We have conducted the same measurements at different magnitudes
of B0 = 0.55 and 0.82 T, and found similar values for the spin–
orbit fields.

As discussed above, measurements at two angles, θ = 0 and
90◦, were needed to obtain BSIA and BBIA. At θ = 45◦, both BSIA

and BBIA can be determined simultaneously. This is because not
only the amplitude, but also the phase of the oscillation in ϕ
contains information about the spin–orbit fields. The zero-crossing
of A(θ, ϕ) occurs at ϕ0 = arctan [(BSIA −BBIA)/(BSIA +BBIA)],
compared with ϕ0 = θ for θ = 0 and 90◦. For θ = ϕ = 0 and
90◦, BSIA and BBIA are perpendicular to B0 (Fig. 1a,b) and A(θ,ϕ)
vanishes, because it is equal to the component of BSIA +BBIA along
the direction of B0. If however θ=ϕ=45◦, BSIA is still perpendicular
to B0, but BBIA is now parallel, and A(θ,ϕ) = BBIA.

The measurement at θ = 45◦ is shown in Fig. 3d, with a fit
to equation (3). For V0 = 2 V, we extract the spin–orbit fields
BSIA = −2.4 mT and BBIA = 19.1 mT for sample 1. These values
correspond well to the values obtained from θ = 0 and 90◦. Relative
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Figure 3 Spin–orbit fields as a function of ϕ for θ = 0, 90◦ and 45◦ .
a,b, Depending on θ, we measure (BBIA + BSIA ) sinϕ (at θ = 0) (a) or
(BBIA − BSIA )cosϕ (at θ = 90◦ ) (b). The gate modulation amplitude was 12 dBm for
sample 1 and 14 dBm for samples 2 and 3. c, Both BSIA and BBIA increase linearly as
a function of the electric field. d, For θ = 45◦ , the measured spin–orbit field is
BBIAcos (ϕ−π/4)+ BSIAsin (ϕ−π/4) with a linear dependence on the applied gate
voltage. At ϕ = 45◦ , we directly measure BBIA, and at ϕ = −45◦ , −BSIA (data for
sample 1).

variations in BSIA of up to 50% (but far less in BBIA) occurred for
different cooldowns of the same sample, which we attribute to the
freezing of electron states in the QW interface or to strain.

Knowing the electron g-factor and drift wavevector, k, we
can calculate the coupling constants α and β from BSIA and
BBIA using equation (1). For sample 3, the mobility is known
(see the Methods section), and with a numerical simulation
of E0, we obtain α = h̄gµBBSIA/m?µE0 = 1.5 × 10−13 eV m and
β = h̄gµBBBIA/m?µE0 = −1.4 × 10−13 eV m, where we have used
g = −0.27, as independently measured by TRFR in a known
external magnetic field, and assuming g < 0. Previous experiments
report α ≈ 5–10×10−12 eV m on In0.53Ga0.47As/In0.52Al0.48As QWs
or heterostructures9,13,16 and in InAs/AlSb QWs20 and assume
α � β. The Rashba coupling is proportional to the average
electric field in the valence band3, including contributions from
band discontinuities. We estimate the valence band offset in our
QWs to be of the order of 10 meV, which is much smaller
than in those previously investigated structures, and explains our
small value of α. Our α is about four times larger than that
reported in ref. 23, where an In0.07Ga0.93As epilayer (10 times
thicker than our QW) was studied. There, the interfaces play a
minor role and strain-induced spin–orbit coupling predominates.
The linear Dresselhaus term is expected to scale with the extent
of the wavefunction in the confinement direction, 〈k2

z〉. For an
infinitely deep well with width `, kz ∝ 1/`, and β ∝ 1/`2.
Assuming that samples 1 and 2 have similar mobilities, we
observed almost the same β, although the QW in sample 2
is twice as wide as that in sample 1. This could be attributed
to inhomogeneous In deposition during growth, leading to a
triangular confinement potential, where the nominal QW width has
less influence on β.
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ELECTRIC-DIPOLE-INDUCED SPIN RESONANCE

In electron spin resonance (ESR) experiments, spins that are
initially polarized along the direction of a static magnetic field,
B0 = Bz , perform Rabi oscillations between the states parallel
and antiparallel to Bz if an a.c. magnetic field (the tipping field)
is applied in the plane perpendicular to Bz and at the Larmor
frequency ν = gµBBz/h. Instead of an a.c. magnetic field, we use
an a.c. electric field, Ex(t), in the plane of the QW. It induces
an oscillating spin–orbit field, By(t), which can serve as a tipping
field for ESR, in this context referred to as electric-dipole-induced
spin resonance (EDSR)28. The measurements shown in Fig. 4 have
been conducted in Faraday geometry with sample 1. Here, the
external magnetic field, Bz , is parallel to the laser propagation and
perpendicular to the QW plane. The pump laser pulse polarizes
the spins into an eigenstate, in line with Bz , and the probe pulse
monitors the spin polarization along z. In Fig. 4a, the pump–
probe delay, 1τ, has been set to 3 ns, and the Faraday signal is
recorded while sweeping the frequency, ν, of Ex(t) and Bz . On
resonance, the optically generated spin polarization precesses about
the spin–orbit-induced tipping field, and the TRFR signal at 1τ =3
ns becomes negative. We observe spin resonance with |g| = 0.57,
which is in agreement with the observed spin precession in the
second section.

In Fig. 4b,c, TRFR scans are collected for varying Bz ,
monitoring the spin dynamics. At Bz = 120 mT, the Larmor
frequency matches the electric-field frequency ν = 960 MHz and
resonance occurs. Note that the short spin relaxation time of
≈1 ns strongly reduces the signal. At 1τs ≈ 1,800 ps, the spins
have performed a π/2 Rabi oscillation, yielding an estimate
of the tipping-field amplitude, By = 2h/gµB41τs ≈ 35 mT.
Here, the factor 2 takes into account the linearly (and not
circularly) oscillating tipping field29. This value agrees well with
the measurements of |BSIA − BBIA| ≈ 33 mT at a gate modulation
amplitude of V0 ≈ 2.5 V (15 dBm) and ϕ = 0.

In ESR, a tipping field that oscillates circularly in the x/y
plane is assumed, resulting in a monotonous decrease of the spin
polarization along z during the first π/2 Rabi oscillation. The spin
dynamics can then be solved analytically in the ‘rotating frame’. In
EDSR, the Rabi oscillation on resonance is not steady with time
(Fig. 4b), because the tipping field oscillates linearly on the y axis
instead. The precession of a spin is described by the Bloch equations
(neglecting spin relaxation)

Ṡ =
gµB

h̄
B×S,

from which we find Ṡz(t ′) = gµBBy(t ′)Sx(t ′)/h̄, where the dot
denotes the time derivative and t ′

= 1τ + t . The tipping field,
By(t ′) ∝ sin(2πνt ′), and with it Ṡz(t ′) vanish twice per electric-
field period, 1/ν, resulting in a stepwise decrease of Sz (on
resonance, Sx(t ′) and By(t ′) vanish simultaneously). This is
shown in Fig. 4d, where the time derivative of the Faraday signal,
Θ̇ F(t ′) ∝ Ṡz(t ′), is plotted for different 1τ and t and for Bz on
resonance. Apart from decaying with time, it is periodic in both
1τ and t , with period 1/2ν. The stepwise decrease of Sz can
be reproduced by a numerical solution of the Bloch equations
including a spin-relaxation term with T1 = T2 = 1 ns, Bz = 120 mT,
Bx =0 and By(t)=34 mT sin(2πνt). We show Ṡz of this solution in
Fig. 4e, together with the experimentally measured Θ̇ F(t ′) and the
corresponding solution with a rotating tipping field. For the latter,
the tipping field has to be reduced by a factor of 2 (ref. 29).

The technique presented here to unambiguously determine
Rashba and Dresselhaus spin–orbit fields with high precision
can be extended to any semiconductor sample, if optical access
to electron spin precession is provided. This is useful for the

t (ps)
(M

Hz
)

FR

dFR

dF
R 

(a
.u

.)

Δ  (ps)

Fa
ra

da
y 

ro
ta

tio
n 

(a
.u

.)

FR (a.u.)

3

0

–5

0

–8

Bz (mT)

Bz (mT)

0

= 960 MHz

Bz = 188 mT

Bz = 120 mT

–5

0

200

400

600

800

1,000

0–300 300

0

0.1

0.2

0 1,000 2,000 3,000

0

1,000

2,000

50 100 150 200 250

1,0000 2,000 3,000
–100

500

1,000

2,000

3,000

0 500 1,000

   = 960 MHz

τ

Δ  (ps)τ
Δ 

 (
ps

)
τ

Δ 
 (p

s)
τ

ν

ν

ν

3,000

a

c

d e

b

Figure 4 Spin resonance induced by an oscillating spin–orbit field. a, TRFR
signal at 1τ = 3 ns for varying external magnetic fields, Bz , and electric-field
frequencies, ν. Resonance is observed with |g| = 0.57. b, TRFR scans on (red line)
and off (black line) resonance. c, TRFR scans, ΘF (1τ ), at different Bz . On
resonance, the spins precess coherently about the spin–orbit-induced tipping field.
d, Differential TRFR (dFR), signal, Θ̇ F (1τ + t ), on resonance (ν = 960MHz); the
red lines are guides to the eye at 1τ = t. e, Measured Θ̇ F (1τ )∝ Ṡz (1τ ) (solid
line) and Bloch simulations with linearly oscillating (dotted line) and rotating tipping
field (dashed line), at ν = 960MHz and t= 400 ps (solid black line in d).

optimization of semiconductor materials and QW designs with
increased spin–orbit fields that can be used for efficient EDSR-
based spin manipulation. Moreover, it might facilitate the tuning
of systems where Rashba and Dresselhaus terms cancel each
other out, opening an avenue to study spin dynamics in this
interesting regime.

METHODS

APPLICATION OF THE ELECTRIC FIELD
In the centre of four top-gate electrodes, which enclose a square with
150 µm side length (see Fig. 1d), the angle ϕ of the oscillating electric field,
E(t), is determined by the amplitudes Ex and Ey of two superposed fields
along x̂ and ŷ, E0 = Ex x̂+Ey ŷ. Ex and Ey are generated by two phase-locked
oscillators, each driving two opposite electrodes. In the diffusive regime, the
scattering time of the electrons in the QW (≈0.5 ps from mobility
measurements) is much smaller than 1/ν and, therefore, their average drift
wavevector points along E(t) and its magnitude is given by
k(t) = m?µE(t)/h̄ = m?µE0 sin(2πνt)/h̄, where m? is the electron effective
mass, µ is the electron mobility in the QW and h̄ is Planck’s constant.

TIME-RESOLVED FARADAY ROTATION
To determine the total magnetic field acting on the QW electrons in the centre
of the four top-gate electrodes (see Fig. 1d), we use TRFR (ref. 30). A first,
circularly polarized laser pulse (P = 400 µW, focus diameter ≈ 15 µm, pulse
width ≈ 3 ps) tuned to the absorption edge of the QW (870 nm) creates a spin
polarization perpendicular to the QW plane. The linear polarization of a
second laser pulse (P = 50 µW), which is transmitted through the sample at a
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time delay 1τ with respect to the first pulse, is rotated by an angle ΘF

proportional to the spin polarization along the QW normal. As the spins
precess about a local in-plane magnetic field, Btot, an oscillating signal,
ΘF(1τ) =Θ0 cos(ω1τ)e−1τ/T?

2 , is measured (see Fig. 2a). The exponential
accounts for the finite spin lifetime T ?

2 , and ω = gµBBtot/h̄ is proportional to
the magnitude of the total magnetic field, Btot. Experiments are carried out at
T = 40 K, where the effects of nuclear polarization are negligible31. To probe
the spin precession at a given time, t , and thus at a given phase of k(t) ∝ E(t),
the pulsed laser is phase-locked to the oscillatory field, E(t), with a variable
phase shift. We probe the spin precession during an interval 1τ = 0. . .700 ps,
which is much shorter than the a.c. electric-field period of 1/ν = 6,250 ps.
Therefore, E(t) is roughly constant over the spin precession observed and a
well-defined precession frequency, ω(t), can be obtained, see Fig. 1e. For
experimental reasons, the time t is known up to an offset t0, which is constant
throughout the experiment.

SAMPLE STRUCTURE
Sample 1 is a 20-nm-wide GaAs/InGaAs QW with an In content of 8.5%,
capped by 21 nm GaAs and grown on a GaAs substrate by metal-organic
chemical vapour deposition. Both the cap and the well are n-doped to
maximize the spin lifetime32. Sample 2 is similar to sample 1, but with a QW
width of 43 nm. Sample 3 is a GaAs/InGaAs QW with an In content aimed at
10%, grown by molecular beam epitaxy, n-doped on both sides and in the
20-nm-wide QW, and capped by 30 nm GaAs. For this sample, we determined a
carrier density ns = 5.8×1011 cm−2 and a mobility µ = 10,600 cm2 V−1 s−1 in
a Van der Pauw–Hall measurement. Transport measurements of samples 1 and
2 were dominated by strongly localized states, presumably owing to a parallel
conductivity from the doping layer, and rendered determination of ns and µ in
the QW impossible. In the optical measurements, however, the QW could be
probed independently of the doping layer. The fitting parameter B0 in
equation (3) is independent of θ for all three samples, which indicates that the
g-factor is isotropic in the QW plane, as expected for (001) GaAs/InGaAs QWs.
Top-gate electrodes are fabricated by evaporating 80 nm Au on a poly(methyl
methacrylate) mask defined by standard electron-beam lithography techniques.

Received 20 March 2007; accepted 14 June 2007; published 15 July 2007.
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