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The use of a nearby metallic ground-plane to limit the range of the Coulomb interactions between carriers is
a useful approach in studying the physics of two-dimensional �2D� systems. This approach has been used to
study Wigner crystallization of electrons on the surface of liquid helium, and most recently, the insulating and
metallic states of semiconductor-based two-dimensional systems. In this paper, we perform calculations of the
screening effect of one 2D system on another and show that a 2D system is at least as effective as a metal in
screening Coulomb interactions. We also show that the recent observation of the reduced effect of the ground-
plane when the 2D system is in the metallic regime is due to intralayer screening.
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I. INTRODUCTION

In a two-dimensional electron system �2DES�, strong
Coulomb interactions between electrons can lead to exotic
phenomena such as the Wigner crystal state,1–3 the fractional
quantum Hall effect,4,5 and the anomalous 2D metallic
state.6–8 One route to studying the role played by Coulomb
interactions is to limit their length scale using a metallic
ground-plane located close to the 2DES.9,10 This approach
was first used in studies of the melting of the Wigner crystal
state formed in electrons on a liquid He surface.11,12 More
recently, it has been used to study the role of Coulomb inter-
actions in the insulating13 and metallic14 regimes of a 2D
hole system �2DHS� formed in an AlGaAs/GaAs heterostruc-
ture.

Whereas the study of Coulomb interactions in the insulat-
ing regime13 was achieved quite straightforwardly using a
metal surface gate separated from the 2DHS by �500 nm
�see Fig. 1�a��, the corresponding study in the metallic re-
gime could not be achieved in this way. This is because the
higher hole density p in the metallic regime requires that the
distance d between the 2DHS and ground-plane be compa-
rable to the carrier spacing �d�2��p�−1/2�50 nm� to
achieve effective screening, and at the same time that the
2DHS be deep enough in the heterostructure ��100 nm� to
achieve a mobility sufficient to observe the metallic behav-
ior. To overcome this challenge, a double quantum well het-
erostructure was used �see Fig. 1�b�� such that the 2DHS
formed in the upper quantum well �screening layer� served as
the ground-plane for the lower quantum well �transport
layer�, enabling the measurement of a �340 nm deep, high
mobility 2DHS separated by only 50 nm from a
ground-plane.14

In considering experiments on screening in double quan-
tum well systems, a natural question to ask is whether a 2D
system is as effective as a metal gate when used as a ground-
plane to screen Coulomb interactions between carriers in a
nearby 2D system. This is important given that the screening
charge in a 2D system is restricted to two dimensions and the
density of states is several orders of magnitude smaller than
in a metal film. In this paper, we perform calculations of the

screening effect of a ground-plane on a 2D system for two
cases: the first where the ground-plane is a metal and the
second where it is a 2D system. We begin using the Thomas-
Fermi approximation in the absence of intralayer screening
in the transport layer to show that a 2D system is at least as
effective as a metal gate as a ground-plane for the experi-
ment in Ref. 14. We also compare the experiments in the
insulating13 and metallic14 regimes of a 2D hole system in
the Thomas-Fermi approximation, to explain why the
ground-plane has less effect in the metallic regime compared
to the insulating regime. Finally, since the experiment by Ho
et al. was performed at rs�1, where the Thomas-Fermi ap-
proximation begins to break down, we extend our model to
account for exchange and finite thickness effects to see how

FIG. 1. �Color online� Schematics of the ground-plane screening
experiments recently performed by �a� Huang et al. �Ref. 13� and
�b� Ho et al. �Ref. 14�. In �b�, there are two possible ground-plane
configurations. In the first, the gate is grounded and the 2D system
acts as the ground-plane. In the second, the gate is biased to deplete
the upper 2D system and the gate then acts as the ground-plane
instead. This allows the distance between the transport layer and the
ground-plane to be varied in situ—For more details, see Ref. 14.

PHYSICAL REVIEW B 80, 155412 �2009�

1098-0121/2009/80�15�/155412�12� ©2009 The American Physical Society155412-1

http://dx.doi.org/10.1103/PhysRevB.80.155412


these affect the conclusions from the Thomas-Fermi model.
The paper is structured as follows. In Sec. II we derive the

dielectric functions for screening of a 2D hole system by a
metal gate and another nearby 2D hole system. In Sec. III,
we compare the various dielectric functions numerically and
discuss their implications for the ground-plane screening ex-
periments of 2D systems in the insulating13 and metallic14

regimes. Conclusions will be presented in Sec. IV. For read-
ers unfamiliar with the intricacies of screening in 2D sys-
tems, we give a brief introduction to the screening theory for
a single 2D system in Appendix A to aid them in understand-
ing the theory developed in Sec. II. In Appendix B, we com-
pare our model accounting for exchange and finite thickness
effects to related works on many-body physics in double
quantum well structures. In Appendix C we show how our
analysis of ground-plane screening can be related to previous
work on bilayer 2D systems that have studied the compress-
ibility. In contrast to experiments on ground-plane screening
of the interactions within a 2D system,13,14 previous experi-
ments on bilayer 2D systems have examined the compress-
ibility of a 2D system by studying penetration of an electric
field applied perpendicular to the 2D plane.15 We show that
although these two screening configurations have quite dis-
tinct geometries, our model is consistent with widely used
analysis15 describing the penetration of a perpendicular elec-
tric field through a 2D system.

In the calculations that follow, we use linear screening
theory and the static dielectric function approximation �i.e.,
�→0�. Unless otherwise specified, we assume for conve-
nience that the 2D systems contain holes �electron results can
be obtained with appropriate corrections for charge and
mass� to facilitate direct connection with recent experimental
results in AlGaAs/GaAs heterostructures.13,14 We also as-
sume that tunneling between the two quantum wells is neg-
ligible and ignore any Coulomb drag effects �i.e., interlayer
exchange and correlations�.

II. SCREENING OF ONE 2D LAYER BY ANOTHER

We now begin considering the screening effect of a
nearby ground-plane on a 2D system �transport layer� for
two different configurations. In the first, the ground-plane
�i.e., screening layer� is a metal surface gate �see Fig. 2�a��
and in the second, the ground-plane is another 2D system
�see Fig. 2�b��. In both cases the transport and screening
layers are separated by a distance d.

If we consider some positive external test charge �1
ext

added to the transport layer, this leads to induced charge in
both the transport layer �1

ind �as in Appendix A� and in the
screening layer �2

ind. Note however that no external charge is
added to the screening layer, so �2

ext=0 and �2=�2
ind, whereas

�1=�1
ext+�1

ind.
How we deal with the induced charge in the screening

layer differs in the two cases. In both cases, we consider the
transport layer and a second layer of charge a distance D
above it; each layer having a potential and charge density of
�1�q� ,�1�q� and �2�q� ,�2�q�, respectively. For a metal sur-
face gate, we can use the standard image charge approach,16

which involves considering the induced charge in the screen-

ing layer as a 2D layer of negative “image” charges located a
distance D=2d away from the transport layer. This results in
�2

ind=−�1 for a metal gate. The image charge approach as-
sumes that the ground-plane is a perfect metal. This assump-
tion is relatively well satisfied by a typical metal surface gate
�Au gate �150 nm thick� but not by a 2D system. Thus
when a 2D system is used as the screening layer, we cannot
assume an added induced negative image charge as we can
for the metal. Instead, we account for screening by a 2D
system by directly calculating its induced charge, which is
located in the screening layer �i.e., at a distance D=d�. This
results in �2

ind=�0�2 for a 2D screening layer, where �0 is the
polarizability, which describes how much �ind is produced in
response to the addition of �ext. Note that we are only con-
sidering the case where the both 2D layers are of the same
type of charge �e.g., a bilayer 2DHS�.

Charge in one layer leads to a potential in the other via the
interlayer Coulomb interaction:17

U�q� = F� 1

4�	�r2 + D2� = e−qDV�q� �1�

where V�q�= 1
2	q is the intralayer Coulomb interaction, D is

the distance between the two layers, and F is the Fourier
transform. If the screening layer is a metal D=2d, and D
=d if it is a 2D system. The resulting potential in the trans-
port layer then becomes:

�1�q� = V�q��1 + U�q��2
ind�q� . �2�

We discuss how to obtain �2
ind�q� in Sec. II A. The effective-

ness of the screening is obtained from the modified dielectric
function 	�q ,d�, which we define as the inverse of the ratio

Metal Gate

D = d

d

d

2D Screening layer { 2, 2}

2D Transport layer { 1, 1}

2D Transport layer { 1, 1}

Image plane { 2, 2}

(a)

(b)

Source Drain

Source Drain

D = 2d

FIG. 2. Schematics showing the two systems considered in this
paper. The transport layer is screened by �a� a metal surface gate
and �b� a second 2D system. In both cases the screening layer is
separated by a distance d from the transport layer, and the transport
�1� and screening �2� layers have independent potentials � and
charge densities �.
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of the screened potential to the unscreened potential for the
transport layer:

	�q,d� = 	 �1

�1
ext
−1

. �3�

The dielectric function for the transport layer can be ob-
tained for three possible configurations: no screening layer
�i.e., just a single 2D system�, a 2D screening layer and a
metal screening layer, which we denote as 	single�q�,
	2D�q ,d�, and 	metal�q ,d�, respectively. 	single�q� is the con-
ventional dielectric function for a single 2D system and can
be recovered by taking the limit d→
 for either 	2D�q ,d� or
	metal�q ,d�, as we show in Sec. II C. If one wanted to take
transport theory for a single layer and consider the effects of
ground-plane screening, it is only necessary to replace
	single�q� with 	2D�q ,d� or 	metal�q ,d� to take into account the
screening effect of a 2D or metal ground-plane, respectively.

We will now obtain the various 	 using an approach
involving the random phase approximation18 �RPA� and
Thomas-Fermi �TF� approximation.19 At first we will ignore
�Sec. II A� and later include �Sec. II B� intralayer screening
in the transport layer in the calculations. Finally, in Sec. II C,
we will extend the model for a 2D screening layer to account
for its behavior at lower densities, to confirm that our con-
clusions from the simpler calculations are robust.

A. No intralayer screening in the transport layer

We begin by considering the case where there is no intra-
layer screening in the transport layer. This is useful because
it allows a straightforward comparison of the effectiveness of
the 2DHS as a ground-plane, without the obscuring effect of
intralayer screening. To do this calculation, we set �1

ind=0,
such that �1=�1

ext. In other words, there is only external
charge in the transport layer and only induced charge in the
screening layer.

Considering the metal gate first, we have �2
ind�q�=

−�1�q�=−�1
ext�q� from the method of images. If we combine

the two results above for �1 and �2
ind with Eq. �2�, we obtain

�1�q� = �V�q� − U�q���1
ext�q� . �4�

After using Eq. �1� to eliminate U�q�, Eq. �3� then gives the
dielectric function for the metal gate:

1

	metal,ns�q,d�
= 1 − e−2qd �5�

where the additional subscript ns denotes that intralayer
screening has been ignored.

For a 2D screening layer, the dielectric function is ob-
tained self-consistently through the RPA as follows. The in-
duced charge is related to the screening layer potential by

�2�q� = U�q��1 + V�q��2
ind�q� �6�

�2
ind�q� = �2

0�q��2�q� �7�

where �2
0 is the polarizability of the screening layer, normally

given by the 2D Lindhard function.20 When this is combined
with Eq. �6�, knowing that �1=�1

ext, we obtain

�2
ind =

�2
0�q�V�q�

1 − �2
0�q�V�q�

e−qd�1
ext. �8�

This result is substituted into Eq. �2�, and using Eqs. �1� and
�3� gives:

1

	2D,ns�q,d�
= 1 +

�2
0�q�V�q�

1 − �2
0�q�V�q�

e−2qd. �9�

To simplify this expression, we use the Thomas-Fermi
approximation �2

0�q�=−e2 dn
d� , where dn

d� is the thermodynamic
density of states21 of the 2D system, to give

1

	2D,ns�q,d�
= 1 −

qTF

q + qTFe−2qd �10�

where the Thomas-Fermi wavevector qTF= m�e2

2�	0	r�
2 . Note that

if we take the 2D screening layer to the metallic limit, in
other words, we give it an infinite density of states, which
corresponds to qTF→
, then Eq. �10� reduces to Eq. �5�, as
one would expect.

B. With intralayer screening in the transport layer

We now consider the case where there is intralayer
screening �i.e., finite polarizability and induced charge� in
the transport layer. To approach this problem, we again place
an external charge density �1

ext in the transport layer, but now
we have induced charge in both the transport �1

ind and screen-
ing �2

ind layers. Additionally, we label the polarization �i
0�q�

and Thomas-Fermi wavenumber qi
TF where i=1 or 2 corre-

sponding to the transport and screening layers, respectively.
The derivation proceeds as before, but with the addition of
the induced charge density �1

ind�q�=�1
0�q��1�q� in the trans-

port layer. The results obtained are

1

	metal,s�q,d�
=

1 − e−2qd

1 − V�q��1
0�q��1 − e−2qd�

=
1 − e−2qd

1 +
q1

TF

q �1 − e−2qd�

�11�

for the metal gate, where the added subscript s denotes that
intralayer screening has been included, and

1

	2D,s�q,d�
=

1 − V�2
0�1 − e−2qd�

�1 − V�1
0���1 − V�2

0�� − V2�1
0�2

0e−2qd

=

1 +
q2

TF

q
�1 − e−2qd�

	1 +
q1

TF

q

	1 +

q2
TF

q

 −

q1
TFq2

TF

q2 e−2qd

�12�

when the screening layer is a 2D system.
We can check the consistency of these equations with

those in Sec. II A in three ways. Firstly, by setting q1
TF=0,

which corresponds to no screening or induced charge in
the transport layer, Eqs. �11� and �12� reduce to Eqs. �5� and
�10�, respectively. Secondly, if we set q2

TF=0 instead, which
corresponds to no screening or induced charge in the
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screening layer, then 	2D,s
−1 in Eq. �12� reduces to 	single

−1 , which
is given in the Thomas-Fermi approximation by:21

1

	single�q�
= 	1 +

q1
TF

q

−1

. �13�

Finally, if we set q2
TF→
 to take the 2D screening layer to

the metallic limit, then 	2D,s
−1 in Eq. �12� reduces to 	metal,s

−1 in
Eq. �11�.

C. More accurate calculations for 2D systems
at lower densities

Following our relatively simple treatment of ground-plane
screening above, it is now interesting to ask how the results
of our calculations change if we extend our model to account
for two phenomena ignored in our Thomas-Fermi model:
exchange effects at low densities and the finite thickness of
the screening and transport layers.

The Thomas-Fermi approximation works well when the
interaction parameter rs= �aB

���p�−1
1, where aB
�

=4�	�2 /m�e2 is the effective Bohr radius. However, it is not
as accurate for 2D systems at lower densities, such as those
used in our experiment,14 where the interaction parameters
for the screening and transport layers were rs�10 and 10.2
�rs�14.3, respectively. At such low densities, it is essential
to include the effects of exchange, and a better approxima-
tion involves the addition of the local field correction,22

which we will use in this section.
One might question if linear screening theory is valid at

the large rs values considered here, or whether it is necessary
to include nonlinear screening effects. Recent compressibil-
ity measurements of 2D systems across the apparent metal-
insulator transition23 have shown that the divergence of the
inverse compressibility at low densities is consistent with
nonlinear screening theories,24,25 which take into account a
percolation transition in the 2D system. This consistency
suggested that at sufficiently low densities, nonlinear theo-
ries were required to adequately describe screening. How-
ever, although we are interested in fairly high rs, our analysis
relates to measurements performed on the metallic side of
the apparent metal-insulator transition, where the effect of
inhomogeneities is minimal. Indeed, Ref. 25 shows a com-
parison of the nonlinear screening theories24,25 with a stan-
dard uniform screening theory. These theories all yield the
same results in our density range of interest, confirming that

it is safe to treat the 2D system as homogenous and use
linear screening in our calculations.

Returning to the inclusion of the local field correction to
our calculations; when considering the case of two 2D lay-
ers, we will use the single layer local-field factor G�q� to
account for intralayer exchange effects, and for simplicity,
ignore any corresponding interlayer effects. In this work we
will use the Hubbard approximation for G�q� �see Eq. �A6�
in Appendix A�. This leads to

�i�q� =
�i

0�q�
1 − V�q��i

0�q��1 − Gi�q��
�14�

where Gi�q� and �i
0 are the local-field factor and 2D

Lindhard function20 for layer i= �1,2�, respectively. The cal-
culations proceed as before in Sec. II B, except that where
we consider intralayer screening in the transport layer, we
have

�1
ind�q� = �1�q���1

ext�q� + U�q��2
ind�q�� . �15�

and where the ground plane is a 2D layer, we have

�2
ind�q� = �2�q��U�q��1

ext�q� + U�q��1
ind�q�� �16�

It is also important to account for the finite thickness of
the screening and transport layers, which are confined to 20-
nm-wide quantum wells in Ref. 14. To do this, we introduce
a form factor F�q� that modifies the bare Coulomb interac-
tion such that V�q�→V�q�F�q�.26 The form factor is defined
as F�q�=�����z��2���z���2e−q�z−z��dzdz�, where ��z� is the
wavefunction of an electron/hole in the direction perpendicu-
lar to the plane of the quantum well.27 Assuming an infinite-
square potential for the quantum well, we obtain:28,29

F�q� =
1

4�2 + a2q2�3aq +
8�2

aq
−

32�4�1 − e−aq�
a2q2�4�2 + a2q2��

�17�

where a is the width of the well. We thus obtain the dielectric
functions 	�q ,d� as defined in Eq. �3�, where �1�q� remains
as defined in Eq. �2�, giving

1

	2D,ns,xf�q,d�
= 1 +

�2e−2qd

1 − �2�1 − G2�q��
�18�

1

	metal,s,xf�q,d�
=

�1 − e−2qd��1 + �1G1�q��
1 − �1�1 − G1�q� − e−2qd�

�19�

1

	2D,s,xf�q,d�
=

1 + �1G1�q� − �2�1 − G2�q� − e−2qd� + �1�2�G1�q�G2�q� − G1�q��1 − e−2qd��

1 − �1�1 − G1�q���
1 − �2�1 − G2�q��� − �1�2e−2qd �20�

where �i=�i
0�q�F�q�V�q� and the additional subscript xf in-

dicates the inclusion of exchange and finite thickness effects.
As a consistency check, if we take the 2D screening layer to

the metallic limit, by using G1�q�=G2�q�=0, �2=−q2
TF /q,

and the limit q2
TF→
, and return to zero thickness F�q�=1,

then 	2D,ns,xf in Eq. �18� reduces to 	metal,ns in Eq. �5�, and
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	2D,s,xf in Eq. �20� reduces to 	metal,s in Eq. �11�. If we sepa-
rate the two layers by taking d→
 then both 	2D,s,xf in
Eq. �20� and 	metal,s,xf in Eq. �19� reduces to 	single described
by Eqs. �A3� and �A5� in Appendix A. We compare this work
with related studies by Zheng and MacDonald30 in Appendix
B.

III. RESULTS AND DISCUSSION

In this section, we will use the various dielectric functions
derived in Sec. II to answer an important physical question
regarding recent experiments on screening long-range Cou-
lomb interactions in 2D systems: does a 2D system screen as
effectively as a metal when used as a ground-plane?

We will answer this question in three stages. First we will
consider the simplest possible case where there is no intra-
layer screening in the transport layer and the Thomas-Fermi
approximation holds. Our results at this stage are directly
applicable to ground-layer screening studies of dilute 2D
systems, such as those investigating Wigner crystallization
on liquid helium11,12 and the 2D insulating state in an
AlGaAs/GaAs heterostructure.13 They may also be relevant
to recent studies of the metal-insulator transition in Si metal-
oxide-semiconductor field-effect transistors,31 where the gate
is likely to produce significant ground-plane screening in the
nearby 2DES located �40 nm away, for example. Second,
we will then look at what happens when intralayer screening
is introduced to the transport layer. This will allow us to
understand why the ground-plane has such a significant ef-
fect on the insulating state in the experiment by Huang et
al.13 and such little effect on the metallic state in the experi-
ment by Ho et al.14 Finally, since the experiments in Refs. 13
and 14 were performed at rs�1, we will investigate how our
results change if we extend beyond the Thomas-Fermi ap-
proximation and begin to account for finite thickness and
exchange effects.

A. Thomas-Fermi approximation in the absence
of intralayer screening

To get an understanding of the basic physics of our
ground-plane screening model, we will begin by ignoring
any effects of intralayer screening in the transport layer and
use the Thomas-Fermi approximation to obtain the polariz-
ability ��q�. There are two important parameters in our equa-
tions: the layer separation d and the wave-number q and to
simplify our analysis we will make these parameters dimen-
sionless by using q /qTF and dTF=d�qTF hereafter. The
Thomas-Fermi wave-number qTF contains all of the relevant
materials parameters involved in the experiment. In Ref. 14,
where measurements were performed using holes in GaAs,
	r=12.8, and m�=0.38me, giving qTF=1.12�109 m−1 �i.e.,
�qTF�−1=0.89 nm�. The corresponding values for electrons
with m�=0.067me are qTF=1.97�108 m−1 and �qTF�−1

=5.06 nm�. Table I presents the d values corresponding to
the four dTF values that we will discuss in Secs. III A and
III B. The first two values correspond to d=50 nm for holes
and electrons, the remaining two allow us to demonstrate

what happens as the screening layer gets much closer to the
transport layer in both cases.

To facilitate a comparative analysis of the effectiveness of
the screening, in Fig. 3�a� we plot the inverse dielectric func-
tion 	−1 vs q /qTF, with both a metal �solid blue/dotted green
lines� and a 2D system �dashed red lines� as the screening
layer, for the four different dTF values listed in Table I. Note
that for the metal screening layer case �	metal,ns�q ,d� in Eq.
�5��, we have explicitly parameterized q and d into q /qTF and
dTF, in order to plot the metal and 2D screening layer cases
on the same axes. The metal data for dTF=56.1 is presented
as dotted green line as it serves as reference data for later
figures. Note that 	−1=1 corresponds to no screening and
	−1=0 corresponds to complete screening of a test charge
placed in the transport layer. Considering the large dTF limit
first, 	−1 only deviates from 1 at small q /qTF, and heads
towards 	−1=0 as q /qTF→0. In other words, screening is

TABLE I. d values for holes and electrons corresponding to the
four dTF values considered in Secs. III A and III B.

dTF 56.1 9.89 3 1

dholes �nm� 50 8.80 2.67 0.89

delectrons �nm� 283.87 50 15.18 5.06
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FIG. 3. �Color online� �a� The inverse dielectric function
	−1�q ,d� vs q /qTF with no intralayer screening in the transport
layer. Data is presented for metal �solid blue and dotted green lines�
and 2D �dashed red lines� screening layers for the four dTF values
presented in Table I. The metal gate data for dTF=56.1 appears as a
dotted green line as it serves as reference data for later figures. �b�
The relative effectiveness of the ground-plane screening due to a
2D screening layer compared to a metal screening layer, as quanti-
fied by the ratio 	metal,ns

−1 /	2D,ns
−1 vs q /qTF for the four dTF values.
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only effective at large distances from a test charge added to
the transport layer. This makes physical sense if one consid-
ers the electrostatics of ground-plane screening. The ground-
plane acts by intercepting the field lines of the test charge
such that they are no longer felt in other parts of the transport
layer. This is only effective at distances from the test charge
that are much greater than the ground-plane separation d and
thus the ground-plane acts to limit the range of the Coulomb
interaction in the transport layer, as pointed out by Peeters.9

With this in mind, it is thus clear why the point of deviation
from 	−1=1 shifts to higher values of q /qTF as dTF is re-
duced. Indeed, all four lines pass through a common 	−1

value when q /qTF= 1
dTF reflecting this electrostatic aspect of

ground-plane screening.
Turning to the central question of the effectiveness of a

2D layer as a ground-plane, in Fig. 3�a� it is clear from the
increasing discrepancy between the solid and dashed lines
that the 2D system becomes less effective than a metal as dTF

is reduced. To quantify this, in Fig. 3�b� we plot the ratio of
the two dielectric constants 	metal,ns

−1 /	2D,ns
−1 , with a ratio of 1

indicating equivalent screening and �1 indicating that a 2D
system is less effective than a metal. For large separations,
for example dTF=56.1, which corresponds directly to the ex-
periment by Ho et al., a 2D system screens as effectively as
the metal gate to within 1%. However if the screening layer
is brought very close to the transport layer dTF�1 �i.e., the
screening layer is only a Thomas-Fermi screening length
away from the transport layer� then the effectiveness of the
2D system as a ground-plane is reduced to �66% of that of
a metal layer at an equivalent distance. It is important to note
that correlations between the two layers can be significant for
such small separations and hence this increasing discrepancy
should be considered as a qualitative result only. Further-
more, as we will see in Sec. III C, exchange actually acts to
enhance the effectiveness of the 2D system as a ground-
plane, making the Thomas-Fermi result above a significant
underestimate of the true ground-plane screening of a 2D
system in the low-density limit.

B. Thomas-Fermi approximation with intralayer screening
in the transport layer

We now add intralayer screening in the transport layer to
our Thomas-Fermi model and begin by asking: what is the
magnitude of this intralayer screening contribution, indepen-
dent of any ground-plane screening effects? In Fig. 4�a�, we
plot the inverse dielectric function 	single

−1 �dash-dotted black
line� for a 2D system with intralayer screening and no nearby
ground-plane. For comparison, we also show the data from
Fig. 3�a� for a metal ground-plane with dTF=56.1 �green dot-
ted line� and the expectation with no screening, 	−1=1 for all
q /qTF �grey dashed horizontal line� in Fig. 4�a�. It is clear
that the addition of intralayer screening has a very significant
impact on the dielectric function, more so than the addition
of a ground-plane. Indeed, returning to an electrostatic pic-
ture and ignoring exchange and correlation effects, 	single

−1

should assume the dTF→0 limit of 	2D,ns
−1 , the Thomas-Fermi

model in the absence of intralayer screening.
We now reintroduce the ground-plane and in Fig. 4�a�, we

plot the combined screening contributions for metal

�	metal,s
−1 �q ,d�, solid blue lines� and 2D �	2D,s

−1 �q ,d�, solid red
lines� screening layers. These are shown for the four differ-
ent values of dTF in Table I. The values for the 2D system are
offset vertically by −0.2 for clarity. The intralayer screening
and ground-plane screening both contribute to the total
screening, albeit on different length scales. This can be seen
by comparing the data in Fig. 4�a� to that in Fig. 3�a�, with
the intralayer screening clearly the dominant contribution. As
a result, distinguishing between individual traces in the sets
corresponding to the metal �blue lines� or 2D �red lines�
ground planes in Fig. 4�a� is difficult. Hence, to better quan-
tify the enhancement that the ground-plane gives over intra-
layer screening alone, in Fig. 4�b� we plot the relative
ground-plane enhancement Rmetal,s= �	single

−1 −	metal,s
−1 � / �	single

−1 �
�solid blue lines� and R2D,s= �	single

−1 −	2D,s
−1 � / �	single

−1 � �dashed
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FIG. 4. �Color online� Effect of a screening layer on a 2D sys-
tem with intralayer screening. �a� Firstly, in order to show the rela-
tive effects of intralayer and ground-plane screening, we plot the
dielectric functions 	−1=1 corresponding to no intralayer or ground-
plane screening �grey dashed horizontal line�, 	metal,ns

−1 with metal
screening layer at dTF=56.1 and no intralayer screening �dotted
green line, data from Fig. 3�a��, and 	single

−1 with intralayer screening
but no ground-plane �dash-dotted black line�. We then consider the
effect of the metal screening layer when the intralayer screening is
included by plotting 	metal,s

−1 �q ,d� �solid blue lines� for the four val-
ues of dTF shown in Table I. Moving through the traces from upper
left to lower right corresponds to decreasing dTF. A similar set of
curves are shown for the case of a 2D screening layer �	2D,s

−1 �q ,d�,
solid red lines� which has been offset vertically by −0.2 for clarity,
along with a duplicate of 	single

−1 �dash-dotted black line�. Since the
dielectric functions almost lie on top of each other when intralayer
screening is present, in �b� we plot R, the relative enhancement of
	−1 due to the ground plane. Calculations for the four different
values of dTF in Table I are shown for metal �solid blue lines� and
2D �dashed red lines� ground-planes.
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red lines�, respectively. Note that the ground-plane only pro-
vides significant enhancement over intralayer screening
alone as dTF becomes small, and as in Sec. II A, only pro-
vides enhancements at small q /qTF. The small discrepancies
between the data for the metal and 2D screening layers in
Figs. 4�b� directly reflect the increased effectiveness of the
metal ground-plane over a 2D ground-plane shown in Fig.
3�b�.

The data in Figs. 3 and 4 provide an interesting insight
into recent experiments on ground-plane screening in 2D
hole systems in the insulating and metallic regimes.13,14 Due
to the low hole density and conductivity in the insulating
regime, intralayer screening is less effective and the domi-
nant contribution to screening is the ground-plane, which
acts to limit the length scale of the Coulomb interactions, as
Fig. 3�a� shows. This results in the ground-plane having a
marked effect on the transport properties of the 2D system as
shown by Huang et al.13 In comparison, for the metallic
state, where the density and conductivity are much higher,
intralayer screening is the dominant contribution, and a
ground-plane only acts as a long-range perturbation to the
screening, as shown in Fig. 4�a�. This perturbation to the
intralayer screening is particularly small at dTF=56.1 and
results in the ground-plane having relatively little effect on
the transport properties in the metallic regime as found by
Ho et al.14 Although Fig. 4�b� suggests that decreasing dTF

will increase the effect of the ground plane, in practice there
are issues in achieving this. For holes in GaAs, there is little
scope for further reducing d due to increasing Coulomb drag
and interlayer tunnelling effects. Also, in our model we have
neglected interlayer exchange and correlation effects and
these may become significant at these lower distances.

C. Beyond the Thomas-Fermi approximation

Following our relatively simple treatment of ground-plane
screening above, it is now interesting to ask how the results
of our calculations change if we extend our model to account
for two phenomena ignored in our Thomas-Fermi model:
exchange effects at low densities and the finite thickness of
the screening and transport layers.

The inclusion of the Hubbard local-field correction G�q�,
finite thickness form factor F�q�, and the use of the Lindhard
function for �0�q� adds two parameters to the analysis, the
well thickness a=20 nm and the Fermi wave-vector kF. This
removes our ability to reduce the problem down to a single
adjustable parameter dTF as we did in Secs. III A and III B.
Additionally, accounting for finite well width puts a lower
limit on d, which must be greater than a to ensure that the
wells remain separate. Hence for the remaining analysis we
will only consider d=50 and 30 nm, which correspond to
dTF=56.1 and 33.7, respectively. As in earlier sections, we
will first analyze the dielectric function ignoring intralayer
screening in the transport layer, which we achieve by setting
�1

ind=0.
In Fig. 5�a�, we plot 	2D,ns,xf

−1 �dashed red lines� obtained
using Eq. �20� for d=50 and 30 nm, and for comparison,
	metal,ns

−1 for d=50 nm �dotted green line� from Fig. 3�a� and
the corresponding result for d=30 nm �solid blue line�. One

of the more significant effects of exchange �and also corre-
lations� in 2D systems is that it leads to negative
compressibility15,32,43 for rs�2. It is well known from the
field penetration experiments of Eisenstein et al.15 that nega-
tive compressibility is related to an overscreening of the ap-
plied electric field, leading to a negative penetration field. In
our calculations, a similar overscreening is observed, with a
2D system producing more effective ground-plane screening
than a metal gate at intermediate q /qTF in Fig. 5�a�. The
enhanced screening when the ground-plane is a 2D system is
evident in Fig. 5�b�, where we plot the ratio 	metal,ns

−1 /	2D,ns
−1 ,

which takes values greater than 1 for q /qTF
0.1.
We now reintroduce intralayer screening in the transport

layer, and in Fig. 6�a� we plot 	metal,s,xf
−1 �solid blue line� and

	2D,s,xf
−1 �dashed red line� for d=50 and 30 nm. The values for

the 2D system are offset vertically by −0.2 for clarity. For
comparison, we also plot 	single

−1 �dash-dotted black lines—
duplicated and offset vertically by −0.2�, along with the data
from Fig. 3�a� for a metal ground-plane at d=50 nm with no
intralayer screening �green dashed line�, and the expectation
with no screening 	−1=1 for all q /qTF �grey dashed horizon-
tal line�. As we found earlier with the Thomas-Fermi model
�see Fig. 4�a��, the inclusion of intralayer screening has a
profound effect on the dielectric function contributing sig-
nificantly more to the overall screening than the addition of a
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FIG. 5. �Color online� �a� Plots of 	−1 vs q /qTF for a metal �solid
blue and dotted green line� and 2D �dashed red lines� ground plane
for d=30 and 50 nm accounting for exchange and finite thickness
effects but ignoring intralayer screening in the transport layer. The
dotted green line corresponds to that in Fig. 3�a�. �b� A plot of the
relative screening effect of a 2D layer compared to a metal �solid
lines�, as quantified by the ratio 	metal

−1 /	2D
−1 . In contrast to the results

for the Thomas-Fermi model �dashed line—data from Fig. 3�b��, we
find that a 2D layer is actually more effective than a metal as a
ground-plane when exchange and finite thickness effects are in-
cluded in the calculation.
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ground-plane does alone. This demonstrates the robustness
of one of the key results of Sec. III B, namely, that in the
metallic regime,14 where intralayer screening effects are sig-
nificant, the ground-plane screening contribution is over-
whelmed by the intralayer screening contribution. This leads
to a significantly reduced ground-plane effect than one would
expect from studies in the insulating regime.13

The effect of including exchange and finite thickness ef-
fects in the calculation is evident by comparing 	2D,s,xf

−1 in
Fig. 6�a� with 	2D,s

−1 in Fig. 4�a�. Considering the individual
contributions, because F�q��1, the finite thickness of the
quantum well acts to reduce the effectiveness of the 2D layer
as a ground-plane. In contrast, the negative compressibility
produced by the exchange contribution acts to significantly
enhance the screening, and as Fig. 6�a� shows, has its most
significant impact at intermediate q /qTF, where the dielectric
function becomes negative, as discussed by Dolgov, Kirzh-
nits and Maksimov,33 Ichimaru,34 and Iwamoto.35 The com-

bined effect of G�q� and F�q� is to significantly enhance the
screening at intermediate q /qTF whilst reducing it to levels
comparable to the metal ground-plane for large q /qTF. In
other words, the added density dependence in our Hubbard
model leads to enhanced midrange screening at the expense
of short-range screening. A physical interpretation for this
behavior is that at low densities there are insufficient carriers
available to screen effectively close to a test charge, whilst at
intermediate ranges, the negative compressibility produced
by exchange leads to a higher availability of carriers and
better screening than there would otherwise be at higher car-
rier densities where exchange is not as significant. It is also
interesting to consider why the introduction of exchange and
finite thickness effects have such a profound effect on the
intralayer screening contribution compared to the ground-
plane screening contribution. This occurs because the impact
of G�q� and F�q� on the ground-plane contribution is
strongly attenuated by the e−2qd terms that appear in Eqs.
�18� and �20�. Such terms don’t occur for the intralayer
screening contribution, which significantly enhances the im-
pact of the negative compressibility, as is clear by comparing
Fig. 6�a� with Fig. 5�a�.

We close by considering the relative effectiveness of the
metal and 2D ground-planes with all considerations included
in the calculations. In Fig. 6�b� we plot the relative ground-
plane enhancements Rmetal,s,xf= �	single,xf

−1 −	metal,s,xf
−1 � / �	single,xf

−1 �
�solid blue lines� and R2D,s,xf= �	single,xf

−1 −	2D,s,xf
−1 � / �	single,xf

−1 �
�dashed red lines� for d=50 and 30 nm. As in Fig. 5�b�, we
find that exchange, finite thickness and intralayer screening
result in the 2D ground-plane screening more effectively
than a metal ground-plane, with the difference between the
two becoming greater as d is decreased. For d=50 nm, the
ground-plane separation used in Ref. 14, the ground-plane
has significantly more effect ��8–9%� than it does in the
more simple Thomas-Fermi model ��1%� presented earlier.

IV. SUMMARY OF RESULTS AND COMPARISON WITH
EXPERIMENT

We have performed theoretical calculations to investigate
the relative effectiveness of using a metal layer and a 2D
system as a ground-plane to screen Coulomb interactions in
an adjacent 2D system. This is done for two cases: the first is
the relatively simple Thomas-Fermi approximation and the
second is the Hubbard approximation, where we account for
exchange and also finite thickness effects. This study was
motivated by recent experiments of the effect of ground-
plane screening on transport in semiconductor-based 2D sys-
tems.

There were three key findings to our study. Firstly, a 2D
system is effective as a ground-plane for screening Coulomb
interactions in a nearby 2D system, which was an open ques-
tion following the recent experiment by Ho et al.14 In the
Thomas-Fermi approximation, a metal and a 2D system are
almost equally effective at screening the long-range Cou-
lomb interactions in the nearby 2D system, with the metal
becoming relatively more effective as the ground-plane sepa-
ration d is decreased.

1.0

0.5

0.0

-0.5

���
��
��
�

0.001 0.01 0.1 1
q/qTF

0.15

0.10

0.05

0.00

	
��
��
�

d = 30nm

d = 50nm

(a)

(b)

Rmetal,xf(q,d), metal ground plane
R2D,xf(q,d), 2D ground plane

�
� �

 �

�
� �

� � 
 � � � � � � � � �

�
� �

� � � � � � � � � � � � � � �

�
� �

� � � � � � � � � � � �

�
� �

� � � � � � 
 � � � � � �

� � � � � � � � �

FIG. 6. �Color online� Effect of a screening layer on a 2D sys-
tem with intralayer screening, with exchange and finite thickness
effects included. �a� Firstly, in order to show the relative effects of
intralayer and ground-plane screening, we plot the dielectric func-
tions 	−1=1 corresponding to no intralayer or ground-plane screen-
ing �grey dashed horizontal line�, 	metal,ns

−1 with metal screening layer
at d=50 nm and no intralayer screening �dotted green line, data
from Fig. 3�a��, and 	single,xf

−1 with intralayer screening but no
ground-plane �dash-dotted black line�. We then consider the effect
of the metal screening layer when the intralayer screening is in-
cluded, by plotting 	metal,s,xf

−1 �q ,d� �solid blue lines� for d=30 and 50
nm. A similar set of curves are shown for the case of a 2D screening
layer �	2D,s,xf

−1 �q ,d�, solid red lines� which has been offset vertically
by −0.2 for clarity, along with a duplicate of 	single,xf

−1 �dash-dotted
black line�. Since the dielectric functions almost lie on top of each
other when intralayer screening is present, in �b� we plot R, the
relative enhancement of 	−1 due to the ground plane. Calculations
for d=30 and 50 nm are shown for metal �solid blue lines� and 2D
�dashed red lines� ground-planes.
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Secondly, our calculations provide an explanation for why
ground-plane screening has much more effect in the insulat-
ing regime than it did in the metallic regime. Due to the low
hole density and conductivity in the insulating regime, intra-
layer screening is weak and the dominant contribution to
screening is the ground-plane, which acts to limit the length
scale of the Coulomb interactions. This results in the ground-
plane having a marked effect on the transport properties of
the 2D system, as shown by Huang et al.13 In the metallic
regime, intralayer screening cannot be ignored. In addition to
being the dominant contribution for long-range interactions
�i.e., at small q�, the intralayer screening contribution is non-
zero over a much wider range of q, turning the ground-plane
contribution into little more than a small change to the over-
all screening in the 2D system, which is consistent with the
experiment by Ho et al.14

Finally, since both experiments were performed at rs�1,
where the Thomas-Fermi approximation is invalid, we recon-
sider our calculations involving 2D systems using the Hub-
bard approximation for the local-field correction. We show
that our argument regarding the physics of ground-plane
screening in the metallic and insulating regimes remains ro-
bust, but that exchange effects lead to a 2D system being
more effective than a metal layer as a ground-plane. This is
due to the exchange-driven negative compressibility that
occurs32 at rs�2.

V. FURTHER WORK

While our results suggest that ground-plane effects on a
metallic transport layer should strengthen as the ground-
plane separation dTF is reduced, there are a number of issues
that complicate this argument. Firstly, for holes in GaAs,
such as the experiment in Ref. 14, there is little scope to
further reduce d due to the increasing Coulomb drag and
interlayer tunnelling effects that would result. However, it
may be possible to experimentally modify dTF by moving to
a different material system where �qTF�−1 is larger. For ex-
ample, in InAs,36 where m�=0.026me and 	=14.6	0, we
would have �qTF�−1=14.9 nm, or InSb �Ref. 37� where m�

=0.0145me and 	=17.7	0 gives �qTF�−1=32.3 nm. These
�qTF�−1 values are 17 and 28 times larger than those in Ref.
14, respectively. This would allow us to reduce dTF without
changing d, thus avoiding the problems above.

We note that our model neglects interlayer exchange and
correlation effects, which may become significant at these
small distances d, as suggested by calculations at rs=4 by
Liu et al.38 It could be interesting to investigate the effect of
including the interlayer exchange and correlation effects on
the ground plane screening at small d. This may require us-
ing better approximations for the local field correction such
as that developed by Singwi, Tosi, Land and Sjölander39

�STLS�, as there is no equivalent to the Hubbard approxima-
tion for interlayer local-field corrections.

We also note that using the technique in Ref. 14 and the
theory presented here, it would be possible to study the
breakdown of intralayer screening in the transport layer as it
is evolved from the metallic to insulating regime. This could
be compared with compressibility measurements of a 2D

system across the apparent metal-insulator transition,23 pos-
sibly providing new insight into the mechanism driving this
transition.

Lastly, in this paper we only calculate the screening of the
ground-plane on the transport layer via the dielectric func-
tion. It would be interesting to take this work further to cal-
culate the effect of the ground-plane on the actual carrier
transport through the transport layer. Combining the theory
presented here and various models of the metallic and insu-
lating behaviors �see review papers�,6–8 it may be possible to
determine how each of the models are affected by the pres-
ence of a ground plane, and would allow us compare this
with the experimental data in more detail.

ACKNOWLEDGMENTS

This work was funded by Australian Research Council
�ARC�. L.H.H. acknowledges financial support from the
UNSW and the CSIRO. We thank M. Polini, I.S. Terekhov,
and F. Green for helpful discussions.

APPENDIX A: BRIEF REVIEW OF SCREENING THEORY
FOR A SINGLE 2D SYSTEM

In this section we briefly review the basics of screening in
a single 2D system. Readers familiar with screening theory
may wish to proceed directly to Sec. II. A more extended
discussion can be found in Refs. 21, 22, and 40.

Screening occurs when the carriers in a 2D system reor-
ganize themselves in response to some added “external”
positive charge density leading to an electrostatic potential
determined by Poisson’s equation. This reorganization pro-
duces a negative “induced” charge density that acts to reduce
or “screen” the electric field of the external charge. In pro-
ceeding, it is mathematically convenient to instead treat the
problem in terms of wavevectors �q space� so that the �intra-
layer� Coulomb potential V�r�= 1

4�	r becomes V�q�= 1
2	q .21

There are two key parameters of interest in an analysis of
screening. The first is the polarizability ��q�, which relates
the induced �screening� charge density �ind�q� to the external
�unscreened� potential �ext�q�

�ind�q� = ��q��ext�q� . �A1�

The second is the dielectric function 	�q�, which relates the
total �screened� potential ��q� to the external �unscreened�
potential �ext�q�

��q� = �ext�q�/	�q� . �A2�

Conceptually, the polarizability describes how much induced
charge density is produced in response to the addition of the
external charge density, hence it is also often called the
density-density response function.41 The dielectric function
is a measure of how effective the screening is: 	−1=1 corre-
sponds to no screening and 	−1=0 corresponds to perfect
screening.33 The two parameters can be linked via �ext and
the Coulomb potential V�q�, such that
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1

	�q�
= 1 + V�q���q� . �A3�

The results above are precise aside from the assumption of
linear response. However, continuing further requires calcu-
lation of ��q�. This cannot be achieved exactly, and requires
the use of approximations. In the simplest instances, a com-
bination of the Thomas-Fermi19,21 �TF� and random phase
approximations18 �RPA� can be used. However, to properly
account for exchange and/or correlation, particularly at lower
carrier densities, more sophisticated approximations, such as
those developed by Hubbard42 or Singwi, Tosi, Land and
Sjölander39 �STLS� should be used. For a single 2D layer,
this leads to a correction to the induced charge

�ind�q� = �0�q�
�ext�q� + V�q��ind�q��1 − G�q��� �A4�

where G�q� is the local field factor, and �0 is the 2D
Lindhard function.20 This results in

��q� =
�0�q�

1 − V�q��0�q��1 − G�q��
. �A5�

The local-field factor can be calculated in numerous ways.22

In this work, we use the Hubbard approximation,41,42 which
gives a local-field factor

G�q� =
q

2�q2 + kF
2

�A6�

where kF=�2�p is the Fermi wavevector. Although better
approximations are available,22 the Hubbard approximation
is sufficient to introduce a density-dependence into the

screening, unlike the Thomas-Fermi approximation, which is
density independent.

APPENDIX B: COMPARISON WITH OTHER WORK
ON BILAYER SCREENING

In this Appendix, we discuss how the analytical expres-
sion we obtain for 	2D,s,xf

−1 �q ,d� compares with other works
on linear screening theory for bilayer 2D systems produced
in double quantum well heterostructures, in particular, that of
Zheng and MacDonald.30 Note that we have translated the
equations from Ref. 30 into the notation used in our paper
for this Appendix.

Zheng and MacDonald begin by defining a density-
density response function �polarizability� �ij�q ,w� for their
bilayer 2D system by

�i�q,�� = �
j

�ij�q,��� j
ext�q,�� �B1�

where � is the linear density response �i.e., induced-charge
density�, � j

ext is the external potential and i , j=1,2 are the
layer indices with 1 being the transport layer and 2 being the
screening layer. Zheng and MacDonald then use the RPA18

and STLS approximation39 to obtain an expression for the
polarizability:

�−1�q,�� = 	��1
0�q,���−1 − V�q��1 − G11�q�� U�q��G12�q� − 1�

U�q��G21�q� − 1� ��2
0�q,���−1 − V�q��1 − G22�q��


 �B2�

where Gij�q� are the local-field factors that account for the
effects of exchange and correlation.22 For comparison with
our work, we will consider �=0 and ignore interlayer ex-
change and correlations by setting G12�q�=G21�q�=0,
G11�q�=G1�q�, and G22�q�=G2�q�. The latter approximation
will be valid for large d, but we would expect that Gij would
become more significant at lower distances. This is seen in
the work of Liu et al.,38 in which Gii and Gij are calculated
using STLS for different d at rs=4.

In our work, we are seeking to obtain an effective single
layer dielectric function for the transport layer only. Hence
we only put external charge density �1

ext�q� in the transport
layer and set the external charge density in the screening
layer �2

ext�q� to zero. This results in external potentials in the
two layers of �1

ext�q�=V�q��1
ext�q�, and �2

ext�q�=U�q��1
ext�q�.

The total potential in the transport layer can thus be ex-
pressed as

�1�q� = �1
ext�q� + V�q��1

ind�q� + U�q��2
ind�q� . �B3�

For the dielectric function of the transport layer, as defined in
Eq. �3�, this results in

1

	�q,d�
= 1 + V�q��11�q� + U�q��12�q� + U�q��21�q�

+ e−qdU�q��22�q� . �B4�

This is analogous to Eq. �A3� for the single layer case. In-
deed, by applying d→
 to Eq. �B4� reduces to Eq. �A3�.
Finally, obtaining the matrix elements �ij�q� by inverting Eq.
�B2� and inserting them into Eq. �B4�, we obtain the same
expression as that given for 	2D,s,xf

−1 �q� in Eq. �20� after re-
turning to zero thickness �i.e., F�q�=1�.
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APPENDIX C: COMPARISON WITH THE SCREENING
OF A PERPENDICULAR ELECTRIC FIELD

BY A 2D SYSTEM

In this section we show that the calculations in this paper,
which describe the screening of in-plane point charges �and
also arbitrary in-plane charge distributions� by a 2D system
and also an adjacent ground plane, are consistent with the
equations by Eisenstein et al.15 describing the penetration of
a perpendicular electric field across a 2D system.

In order to calculate the penetration of the perpendicular
electric field, it is necessary to consider a slightly different
configuration than previously used in Fig. 2�b�. Figure 7
shows a schematic of the system we now consider. We still
have two 2D systems �labelled 1 and 2� separated by a dis-
tance d. We now have no external charge in either of these
layers and only induced charges �1

ind and �2
ind. In order to

apply an electric field across layer 1, we place a layer of
external charge �0

ext a distance d2 below layer 1. The net
electric fields E0 and Ep are shown in Fig. 7, and have been
related by Eisenstein et al. using Eqs. �5� and �6� in Ref. 15.
Translating into the notation of our paper and using �i

0

=−e2� �n
�� �i, this results in

�Ep

�E0
=

− 	�2
0

− 	��1
0 + �2

0� + d�1
0�2

0 . �C1�

We now try to calculate the electric fields E0 and Ep di-
rectly using our model. The induced charges �1

ind and �2
ind are

calculated in a similar fashion to previously in Sec. II C,
although Eqs. �15� and �16� need to be modified slightly to
take into account the position of the external charge. This
results in

�1
ind�q� = �1�q���1

ext�q� + U�q��2
ind�q�� �C2�

�2
ind�q� = �2�q���2

ext�q� + U�q��1
ind�q�� �C3�

where

�1
ext�q� = V�q�e−qd2�0

ext�q� �C4�

�2
ext�q� = V�q�e−q�d+d2��0

ext�q� . �C5�

We set �0
ext�r�=�0, where �0 is a constant 2D surface-

charge density. This simplifies our model into the one-
dimensional problem considered by Eisenstein et al.15 In q
space this gives �0

ext�q�=�0�2��2��q�, where ��q� is the
Dirac delta function. Solving Eqs. �C2� and �C3� simulta-
neously we obtain �i

ind�q�=�i�2��2��q� with

�1 =
�0�1

0�	 − d�2
0�

− 	��1
0 + �2

0� + d�1
0�2

0 �C6�

�2 =
�0	�2

0

− 	��1
0 + �2

0� + d�1
0�2

0 , �C7�

where we have used the property of delta functions that
f�q���q�= f�0���q� for an arbitrary function f�q�. We note
that the above Eqs. �C6� and �C7� are valid even for an
arbitrary local field correction, as at q=0 the Lindhardt func-
tion is equal to the Thomas-Fermi function and for any self-
consistent local field correction G�0�=0 �see equation 3.25
in Ref. 34�. Similarly, the Eqs. �C6� and �C7� are valid even
when allowing for the finite thickness of the 2D systems,
since for an arbitrary form factor F�q� we have F�0�=1.

We can now calculate the electric fields E0 and Ep. For a
single layer of uniform 2D charge density �, the perpendicu-
lar electric field is given by E= �

2	 . By considering the posi-
tions of the electric field E0 and Ep with respect to the charge
layers �0, �1, and �2, we obtain:

Ep =
�0 + �1 − �2

2	
�C8�

E0 =
�0 − �1 − �2

2	
, �C9�

which results in

Ep

E0
=

− 	�2
0

− 	��1
0 + �2

0� + d�1
0�2

0 . �C10�

We note that in this model, the ratio
Ep

E0
is equal to

�Ep

�E0
, as

we have neglected other charges commonly present in 2D
systems, such as regions of modulation doping. Our resulting
Eq. �C10� is thus in agreement with the equations used by
Eisenstein et al.15 �Eq. �C1�.
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